The time-dependent Schr\"odinger equation for atomic hydrogen in few-cycle
laser pulses is solved numerically. Introducing a positive definite quantum
distribution function in energy-position space, a straightforward comparison of
the numerical ab initio results with classical orbit theory is facilitated.
Integration over position space yields directly the photoelectron spectra so
that the various pathways contributing to a certain energy in the photoelectron
spectra can be established in an unprecedented direct and transparent way.Comment: 4 pages, 4 figures REVTeX (manuscript with higher resolution figures
available at http://www.dieterbauer.de/publist.html