3,834 research outputs found

    Masses and decay constants of Bc()B_c^{(*)} mesons with Nf=2+1+1N_f=2+1+1 twisted mass fermions

    Full text link
    We present a preliminary lattice determination of the masses and decay constants of the pseudoscalar and vector mesons BcB_c and BcB_c^*. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1N_f = 2 + 1 + 1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. Heavy-quark masses are simulated directly on the lattice up to 3\sim 3 times the physical charm mass. The physical b-quark mass is reached using the ETMC ratio method. Our preliminary results are: MBc=6341(60)M_{B_c} = 6341\,(60) MeV, fBc=396(12)f_{B_c} = 396\,(12) MeV, MBc/MBc=1.0037(39)M_{B_c^*} / M_{B_c} = 1.0037\,(39) and fBc/fBc=0.987(7)f_{B_c^*} / f_{B_c} = 0.987\,(7).Comment: 7 pages, 3 figures, 1 table; contribution to the proceedings of the XXXVI Int'l Workshop on Lattice Field Theory (LATTICE2018), July 22-28, 2018, East Lansing, Michigan State University (Michigan, USA

    The Chemical Composition of an Extrasolar Minor Planet

    Full text link
    We report the relative abundances of 17 elements in the atmosphere of the white dwarf star GD 362, material that, very probably, was contained previously in a large asteroid or asteroids with composition similar to the Earth/Moon system. The asteroid may have once been part of a larger parent body not unlike one of the terrestrial planets of our solar system.Comment: ApJ, in pres

    Ancient planetary systems are orbiting a large fraction of white dwarf stars

    Full text link
    Infrared studies have revealed debris likely related to planet formation in orbit around ~30% of youthful, intermediate mass, main sequence stars. We present evidence, based on atmospheric pollution by various elements heavier than helium, that a comparable fraction of the white dwarf descendants of such main sequence stars are orbited by planetary systems. These systems have survived, at least in part, through all stages of stellar evolution that precede the white dwarf. During the time interval (~200 million years) that a typical polluted white dwarf in our sample has been cooling it has accreted from its planetary system the mass of one of the largest asteroids in our solar system (e.g., Vesta or Ceres). Usually, this accreted mass will be only a fraction of the total mass of rocky material that orbits these white dwarfs; for plausible planetary system configurations we estimate that this total mass is likely to be at least equal to that of the Sun's asteroid belt, and perhaps much larger. We report abundances of a suite of 8 elements detected in the little studied star G241-6 that we find to be among the most heavily polluted of all moderately bright white dwarfs.Comment: 31 pages, 4 figures, 5 tables. Accepted for the Astrophysical

    Matching commercial thrips predating phytoseids with the highly diversified climatic conditions of different strawberry production systems

    Get PDF
    Flower inhabiting thrips (Order: Thysanoptera) are a major threat to fruit quality in strawberry production around the world. As chemical control is often inefficient, alternative control measures are of broad and current interest. Their fast reproduction makes predatory mites highly suitable for thrips control in a crop with a relatively short cropping season like strawberry. However, climatic conditions of strawberry production can differ strongly depending on the production system (glasshouse, plastic tunnel, open field, etc.) and the time span of cultivation (depending mostly on planting date and the type of cultivar: summer-or everbearing). As predatory mites typically display a temperature-dependent life history and the current commercially available thrips predating phytoseids vary in geographic origin, one can assume that under certain climatic conditions some species will be more applicable than others. The goal of this study is to determine which species are suitable for which climatic conditions. Therefore all (Belgian) production systems and time spans are categorized into three climate types, simulated in the laboratory. The population build-up of seven predatory mite species (A. degenerans, A. montdorensis, A. andersoni, A. limonicus, A. swirskii, N. cucumeris and E. gallicus) were assessed for each of these climatic conditions. Under the coldest condition (A), the in West-Europe indigenous E. gallicus was the only species with a significant population build up. When moderate conditions (B) were simulated E. gallicus, N. cucumeris and A. limonicus were most successful. The warmest regime (C) was most adequate for E. gallicus and A. swirskii

    Asymptotic properties of black hole solutions in dimensionally reduced Einstein-Gauss-Bonnet gravity

    Get PDF
    We study the asymptotic behavior of the spherically symmetric solutions of the system obtained from the dimensional reduction of the six-dimensional Einstein- Gauss-Bonnet action. We show that in general the scalar field that parametrizes the size of the internal space is not trivial, but nevertheless the solutions depend on a single parameter. In analogy with other models containing Gauss-Bonnet terms, naked singularities are avoided if a minimal radius for the horizon is assumed.Comment: 9 pages, plain Te

    Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137

    Get PDF
    On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC)
    corecore