5,858 research outputs found

    On the nature of the magnetic ground-state wave function of V_2O_3

    Full text link
    After a brief historical introduction, we dwell on two recent experiments in the low-temperature, monoclinic phase of V_2O_3: K-edge resonant x-ray scattering and non-reciprocal linear dichroism, whose interpretations are in conflict, as they require incompatible magnetic space groups. Such a conflict is critically reviewed, in the light of the present literature, and new experimental tests are suggested, in order to determine unambiguously the magnetic group. We then focus on the correlated, non-local nature of the ground-state wave function, that is at the basis of some drawbacks of the LDA+U approach: we singled out the physical mechanism that makes LDA+U unreliable, and indicate the way out for a possible remedy. Finally we explain, by means of a symmetry argument related to the molecular wave function, why the magnetic moment lies in the glide plane, even in the absence of any local symmetry at vanadium sites.Comment: 7 pages, 1 figur

    The Milky Way as a High Redshift Galaxy: The Importance of Thick Disk Formation in Galaxies

    Full text link
    We compare the star-formation history and dynamics of the Milky Way (MW) with the properties of distant disk galaxies. During the first ~4 Gyr of its evolution, the MW formed stars with a high star-formation intensity (SFI), Sigma_SFR~0.6 Msun/yr/kpc2 and as a result, generated outflows and high turbulence in its interstellar medium. This intense phase of star formation corresponds to the formation of the thick disk. The formation of the thick disk is a crucial phase which enables the MW to have formed approximately half of its total stellar mass by z~1 which is similar to "MW progenitor galaxies" selected by abundance matching. This agreement suggests that the formation of the thick disk may be a generic evolutionary phase in disk galaxies. Using a simple energy injection-kinetic energy relationship between the 1-D velocity dispersion and SFI, we can reproduce the average perpendicular dispersion in stellar velocities of the MW with age. This relationship, its inferred evolution, and required efficiency are consistent with observations of galaxies from z~0-3. The high turbulence generated by intense star formation naturally resulted in a thick disk, a chemically well-mixed ISM, and is the mechanism that links the evolution of MW to the observed characteristics of distant disk galaxies.Comment: 5 pages, 4 figures; accepted to ApJ Letter

    Are Coworkers in the Italian Peripheral Areas Performing Better? A Counterfactual Analysis

    Get PDF
    Coworking spaces are “serendipity accelerators” designed to host creative people and entrepreneurs. While recent literature has started exploring the indirect effects of coworking spaces on the local context, little is still known on how coworking spaces may directly affect the coworkers’ economic performance and wellbeing. Using a novel dataset based on a survey of 326 CWs working in the Italian coworking spaces in 2018, this paper explores the potential economic impact for coworkers, depending on whether a coworking space is localized in a peripheral or an urban area. Through a propensity-score matching approach, we found that being located in a peripheral area for coworkers may represent an opportunity to earn more than working in an urban center. The same holds for the organization coworkers belong to

    Interplay between topology and dynamics in the World Trade Web

    Get PDF
    We present an empirical analysis of the network formed by the trade relationships between all world countries, or World Trade Web (WTW). Each (directed) link is weighted by the amount of wealth flowing between two countries, and each country is characterized by the value of its Gross Domestic Product (GDP). By analysing a set of year-by-year data covering the time interval 1950-2000, we show that the dynamics of all GDP values and the evolution of the WTW (trade flow and topology) are tightly coupled. The probability that two countries are connected depends on their GDP values, supporting recent theoretical models relating network topology to the presence of a `hidden' variable (or fitness). On the other hand, the topology is shown to determine the GDP values due to the exchange between countries. This leads us to a new framework where the fitness value is a dynamical variable determining, and at the same time depending on, network topology in a continuous feedback.Comment: Proceedings of the 5th conference on Applications of Physics in Financial Analysis (APFA5), 29 June - 1 July 2006, Torino (ITALY

    Applications of physical methods in high-frequency futures markets

    Get PDF
    In the present work we demonstrate the application of different physical methods to high-frequency or tick-by-tick financial time series data. In particular, we calculate the Hurst exponent and inverse statistics for the price time series taken from a range of futures indices. Additionally, we show that in a limit order book the relaxation times of an imbalanced book state with more demand or supply can be described by stretched exponential laws analogous to those seen in many physical systems.Comment: 14 Pages and 10 figures. Proceeding to the SPIE conference, 4 - 7 December 2007 Australian National Univ. Canberra, ACT, Australi

    When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy

    Full text link
    Quenching, the cessation of star formation, is one of the most significant events in the life cycle of galaxies. We show here the first evidence that the Milky Way experienced a generalised quenching of its star formation at the end of its thick disk formation \sim9 Gyr ago. Elemental abundances of stars studied as part of the APOGEE survey reveal indeed that in less than \sim2 Gyr the star formation rate in our Galaxy dropped by an order-of-magnitude. Because of the tight correlation between age and alpha abundance, this event reflects in the dearth of stars along the inner disk sequence in the [Fe/H]-[α\alpha/Fe] plane. Before this phase, which lasted about 1.5 Gyr, the Milky Way was actively forming stars. Afterwards, the star formation resumed at a much lower level to form the thin disk. These events are very well matched by the latest observation of MW-type progenitors at high redshifts. In late type galaxies, quenching is believed to be related to a long and secular exhaustion of gas. In our Galaxy, it occurred on a much shorter time scale, while the chemical continuity before and after the quenching indicates that it was not due to the exhaustion of the gas. While quenching is generally associated with spheroids, our results show that it also occurs in galaxies like the Milky Way, possibly when they are undergoing a morphological transition from thick to thin disks. Given the demographics of late type galaxies in the local universe, in which classical bulges are rare, we suggest further that this may hold true generally in galaxies with mass lower than or approximately MM^*, where quenching could be directly a consequence of thick disk formation. We emphasize that the quenching phase in the Milky Way could be contemporaneous with, and related to, the formation of the bar. We sketch a scenario on how a strong bar may inhibit star formation.Comment: 17 pages, 8 figures. Published versio

    Propagation of UHECRs in cosmological backgrounds: some results from SimProp

    Full text link
    Ultra-High-Energy Cosmic Ray (UHECR) nuclei propagating in cosmological radiation backgrounds produce secondary particles detectable at Earth. SimProp is a one dimensional code for extragalactic propagation of UHECR nuclei, inspired by the kinetic approach of Aloisio et al. As in this approach, only a subset of nuclei and nuclear channels are used as representative. We discuss the validation of the code and present applications to UHECR experimental results. In particular we present the expected fluxes of neutrinos produced in some astrophysical scenario.Comment: Poster presented by A. Di Matteo at the 33rd International Cosmic Ray Conference, Rio De Janeiro (Brasil) July 2-9 201

    Cosmogenic neutrinos and ultra-high energy cosmic ray models

    Full text link
    We use an updated version of {\it SimProp}, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.Comment: 15 pages, 8 figures, some reference added, version accepted for publication in JCA
    corecore