We compare the star-formation history and dynamics of the Milky Way (MW) with
the properties of distant disk galaxies. During the first ~4 Gyr of its
evolution, the MW formed stars with a high star-formation intensity (SFI),
Sigma_SFR~0.6 Msun/yr/kpc2 and as a result, generated outflows and high
turbulence in its interstellar medium. This intense phase of star formation
corresponds to the formation of the thick disk. The formation of the thick disk
is a crucial phase which enables the MW to have formed approximately half of
its total stellar mass by z~1 which is similar to "MW progenitor galaxies"
selected by abundance matching. This agreement suggests that the formation of
the thick disk may be a generic evolutionary phase in disk galaxies. Using a
simple energy injection-kinetic energy relationship between the 1-D velocity
dispersion and SFI, we can reproduce the average perpendicular dispersion in
stellar velocities of the MW with age. This relationship, its inferred
evolution, and required efficiency are consistent with observations of galaxies
from z~0-3. The high turbulence generated by intense star formation naturally
resulted in a thick disk, a chemically well-mixed ISM, and is the mechanism
that links the evolution of MW to the observed characteristics of distant disk
galaxies.Comment: 5 pages, 4 figures; accepted to ApJ Letter