460 research outputs found

    Installation of New CSD (Carbonated Soft Drink) RGB (Returnable Glass Bottle) Line with Food Safety Comply and Final Validation

    Full text link
    The basic of this project was installation of new CSD (carbonated soft drink) RGB (returnable glass bottle) line with comply food safety and final validation of line. New manufacturing line installation deals with installation of all equipment and machine require for smooth running and producing CSD for COCA-COLA company (Coca-Cola, Thums UP, Limca) such as conveyer belt, uncasing machine, light inspection station, bottle washer EBI (electronic bottle inspection ) machine, Paramix, Filler, Sealer, Date coding machine, caser etc. During installation of machine we have fulfill requirement related to machine, work space, hygienic condition so that machine can work smoothly and deliver safe food product The main concern of doing this project was deliver a safe product to the consumer by applying HACCP and ISO22K. I have done hazard analysis and validation of this new installed line and identify CCP and OPRP which need to control by applying control measure

    Barium & related stars and their white-dwarf companions II. Main-sequence and subgiant stars

    Full text link
    Barium (Ba) dwarfs and CH subgiants are the less-evolved analogues of Ba and CH giants. They are F- to G-type main-sequence stars polluted with heavy elements by a binary companion when the latter was on the Asymptotic Giant Branch (AGB). This companion is now a white dwarf that in most cases cannot be directly detected. We present a large systematic study of 60 objects classified as Ba dwarfs or CH subgiants. Combining radial-velocity measurements from HERMES and SALT high-resolution spectra with radial-velocity data from CORAVEL and CORALIE, we determine the orbital parameters of 27 systems. We also derive their masses by comparing their location in the Hertzsprung-Russell diagram with evolutionary models. We confirm that Ba dwarfs and CH subgiants are not at different evolutionary stages and have similar metallicities, despite their different names. Additionally, Ba giants appear significantly more massive than their main-sequence analogues. This is likely due to observational biases against the detection of hotter main-sequence post-mass-transfer objects. Combining our spectroscopic orbits with the Hipparcos astrometric data, we derive the orbital inclinations and the mass of the WD companion for four systems. Since this cannot be done for all systems in our sample yet (but should be with upcoming Gaia data releases), we also analyse the mass-function distribution of our binaries. We can model this distribution with very narrow mass distributions for the two components and random orbital orientation on the sky. Finally, based on BINSTAR evolutionary models, we suggest that the orbital evolution of low-mass Ba systems can be affected by a second phase of interaction along the Red Giant Branch of the Ba star, impacting on the eccentricities and periods of the giants.Comment: Accepted for publication in A&A on the 5th of April, 201

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets

    RADIAL VELOCITY MONITORING OFKEPLERHEARTBEAT STARS

    Get PDF
    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories

    Kepler Eclipsing Binary Stars. Vii. The Catalog Of Eclipsing Binaries Found In The Entire Kepler Data Set

    Get PDF
    The Kepler mission has provided unprecedented, nearly continuous photometric data of ~200,000 objects in the ~105 deg2 field of view (FOV) from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in May of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters, and analytical approximation fits for every known eclipsing binary system in the Kepler FOV. Using target pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e., targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separate light curves for each quarter of available data by optimizing the signal-to-noise ratio, the relative percent eclipse depth, and the flux eclipse depth. We present 289 new eclipsing binaries in the Kepler FOV that were not targets for observation, and these have been added to the catalog

    Climate change and anthropogenic intervention impact on the hydrologic anomalies in a semi-arid area : lower Zab river basin, Iraq

    Get PDF
    Climate change impact, drought phenomena and anthropogenic stress are of increasing apprehension for water resource managers and strategists, particularly in arid regions. The current study proposes a generic methodology to evaluate the potential impact of such changes at a basin scale. The Lower Zab River Basin located in the north of Iraq has been selected for illustration purposes. The method has been developed through evaluating changes during normal hydrological years to separate the effects of climate change and estimate the hydrologic abnormalities utilising Indicators of Hydrologic Alteration. The meteorological parameters were perturbed by applying adequate delta perturbation climatic scenarios. Thereafter, a calibrated rainfall-runoff model was used for streamflow simulations. Findings proved that climate change has a more extensive impact on the hydrological characteristics of the streamflow than anthropogenic intervention (i.e. the construction of a large dam in the catchment). The isolated baseflow is more sensitive to the precipitation variations than to the variations of the potential evapotranspiration. The current hydrological anomalies are expected to continue. This comprehensive basin study demonstrates how climate change impact, anthropogenic intervention as well as hydro-climatic drought and hydrological anomalies can be evaluated with a new methodology

    Binary-object spectral-synthesis in 3D (BOSS-3D) -- Modelling H-alpha emission in the enigmatic multiple system LB-1

    Full text link
    Context: To quantitatively decode the information stored within an observed spectrum, detailed modelling of the physical state and accurate radiative transfer solution schemes are required. In the analysis of stellar spectra, the numerical model often needs to account for binary companions and 3D structures in the stellar envelopes. The enigmatic binary (or multiple) system LB-1 constitutes a perfect example of such a complex multi-D problem. Aims: To improve our understanding of the LB-1 system, we directly modelled the phase-dependent H-alpha line profiles of this system. To this end, we developed a multi-purpose binary-object spectral-synthesis code in 3D (BOSS-3D). Methods: BOSS-3D calculates synthetic line profiles for a given state of the circumstellar material. The standard pz-geometry commonly used for single stars is extended by defining individual coordinate systems for each involved object and by accounting for the appropriate coordinate transformations. The code is then applied to the LB-1 system, considering two main hypotheses, a binary containing a stripped star and Be star, or a B star and a black hole with a disc. Results: Comparing these two scenarios, neither model can reproduce the detailed phase-dependent shape of the H-alpha line profiles. A satisfactory match with the observations, however, is obtained by invoking a disc around the primary object in addition to the Be-star disc or the black-hole accretion disc. Conclusions: The developed code can be used to model synthetic line profiles for a wide variety of binary systems, ranging from transit spectra of planetary atmospheres, to post-asymptotic giant branch binaries including circumstellar and circumbinary discs and massive-star binaries with stellar winds and disc systems. For the LB-1 system, our modelling provides strong evidence that each object in the system contains a disc-like structure

    The colliding-wind binary HD 168112

    Full text link
    peer reviewedRadio surveys of early-type stars have revealed a number of non-thermal emitters. Most of these have been shown to be binaries, where the collision between the two stellar winds is responsible for the non-thermal emission. HD 168112 is a non-thermal radio emitter, whose binary nature has only recently been confirmed spectroscopically. We obtained independent spectroscopic observations to determine its orbit, in addition to radio observations to see if the thermal or non-thermal nature of the emission changes during the periastron passage. We monitored HD 168112 spectroscopically for a 13 year time span. From these data, we determined the orbital parameters, which we compared to the previous results in the literature. From the spectral index of the radio observations, we found how the nature of the emission changes as the system goes through periastron. Combining our results with other literature data allowed us to further constrain the orbital and stellar parameters. We find HD 168112 to have an orbital period of P = 512.17+0.41-0.11 d, an eccentricity of e = 0.7533+0.0053-0.0124, and a mass ratio close to one. From our spectroscopic modelling, we derived the stellar parameters, but we had difficulty arriving at a spectroscopic mass ratio of one. The radio observations around periastron show only thermal emission, suggesting that most of the synchrotron photons are absorbed in the two stellar winds at that phase. Combining our data with the optical interferometry detection, we could constrain the inclination angle to i ~ 63 deg, and the mass of each component to ~ 26 Msun. We have provided an independent spectroscopic confirmation of the binary nature of HD 168112. Although detected as a non-thermal radio emitter, near periastron the radio emission of this highly eccentric system is thermal and is mainly formed in the colliding-wind region. [abridged
    corecore