1,564 research outputs found
A scalable architecture for quantum computation with molecular nanomagnets
A proposal for a magnetic quantum processor that consists of individual
molecular spins coupled to superconducting coplanar resonators and transmission
lines is carefully examined. We derive a simple magnetic quantum
electrodynamics Hamiltonian to describe the underlying physics. It is shown
that these hybrid devices can perform arbitrary operations on each spin qubit
and induce tunable interactions between any pair of them. The combination of
these two operations ensures that the processor can perform universal quantum
computations. The feasibility of this proposal is critically discussed using
the results of realistic calculations, based on parameters of existing devices
and molecular qubits. These results show that the proposal is feasible,
provided that molecules with sufficiently long coherence times can be developed
and accurately integrated into specific areas of the device. This architecture
has an enormous potential for scaling up quantum computation thanks to the
microscopic nature of the individual constituents, the molecules, and the
possibility of using their internal spin degrees of freedom.Comment: 27 pages, 6 figure
Interplay between the electrical transport properties of GeMn thin films and Ge substrates
We present evidence that electrical transport studies of epitaxial p-type
GeMn thin films fabricated on high resistivity Ge substrates are severely
influenced by parallel conduction through the substrate, related to the large
intrinsic conductivity of Ge due to its small bandgap. Anomalous Hall
measurements and large magneto resistance effects are completely understood by
taking a dominating substrate contribution as well as the measurement geometry
into account. It is shown that substrate conduction persists also for well
conducting, degenerate, p-type thin films, giving rise to an effective
two-layer conduction scheme. Using n-type Ge substrates, parallel conduction
through the substrate can be reduced for the p-type epi-layers, as a
consequence of the emerging pn-interface junction. GeMn thin films fabricated
on these substrates exhibit a negligible magneto resistance effect. Our study
underlines the importance of a thorough characterization and understanding of
possible substrate contributions for electrical transport studies of GeMn thin
films.Comment: 9 pages, 9 figure
Quantum state transfer in arrays of flux qubits
In this work, we describe a possible experimental realization of Bose's idea
to use spin chains for short distance quantum communication [S. Bose, {\it
Phys. Rev. Lett.} {\bf 91} 207901]. Josephson arrays have been proposed and
analyzed as transmission channels for systems of superconducting charge qubits.
Here, we consider a chain of persistent current qubits, that is appropriate for
state transfer with high fidelity in systems containing flux qubits. We
calculate the fidelity of state transfer for this system. In general, the
Hamiltonian of this system is not of XXZ-type, and we analyze the magnitude and
the effect of the terms that don't conserve the z-component of the total spin.Comment: 10 pages, 8 figure
Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements
The mass of galaxy clusters is not a direct observable, nonetheless it is
commonly used to probe cosmological models. Based on the combination of all
main cluster observables, that is, the X-ray emission, the thermal
Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster
galaxies, and gravitational lensing, the gravitational potential of galaxy
clusters can be jointly reconstructed. We derive the two main ingredients
required for this joint reconstruction: the potentials individually
reconstructed from the observables and their covariance matrices, which act as
a weight in the joint reconstruction. We show here the method to derive these
quantities. The result of the joint reconstruction applied to a real cluster
will be discussed in a forthcoming paper. We apply the Richardson-Lucy
deprojection algorithm to data on a two-dimensional (2D) grid. We first test
the 2D deprojection algorithm on a -profile. Assuming hydrostatic
equilibrium, we further reconstruct the gravitational potential of a simulated
galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the
projected gravitational potential of the massive and dynamically active cluster
Abell 2142, based on the X-ray observations collected with XMM-Newton and the
SZ observations from the Planck satellite. Finally, we compute the covariance
matrix of the projected reconstructed potential of the cluster Abell 2142 based
on the X-ray measurements collected with XMM-Newton. The gravitational
potentials of the simulated cluster recovered from synthetic X-ray and SZ data
are consistent, even though the potential reconstructed from X-rays shows
larger deviations from the true potential. Regarding Abell 2142, the projected
gravitational cluster potentials recovered from SZ and X-ray data reproduce
well the projected potential inferred from gravitational-lensing observations.
(abridged)Comment: accepted for publication in the journal A&
Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity
Placing an ensemble of ultracold atoms in the near field of a
superconducting coplanar waveguide resonator (CPWR) with one can
achieve strong coupling between a single microwave photon in the CPWR and a
collective hyperfine qubit state in the ensemble with kHz larger than the cavity line width of
kHz. Integrated on an atomchip such a system constitutes a hybrid quantum
device, which also can be used to interconnect solid-state and atomic qubits,
to study and control atomic motion via the microwave field, observe microwave
super-radiance, build an integrated micro maser or even cool the resonator
field via the atoms
Spectroscopy on two coupled flux qubits
We have performed spectroscopy measurements on two coupled flux qubits. The
qubits are coupled inductively, which results in a
interaction. By applying microwave radiation, we observe resonances due to
transitions from the ground state to the first two excited states. From the
position of these resonances as a function of the magnetic field applied we
observe the coupling of the qubits. The coupling strength agrees well with
calculations of the mutual inductance
Abrupt Transition between Thermally-Activated Relaxation and Quantum Tunneling in a Molecular Magnet
We report Hall sensor measurements of the magnetic relaxation of Mn
acetate as a function of magnetic field applied along the easy axis of
magnetization. Data taken at a series of closely-spaced temperatures between
0.24 K and 1.4 K provide strong new evidence for an abrupt ``first-order''
transition between thermally-assisted relaxation and magnetic decay via quantum
tunneling.Comment: 4 pages, including 7 figure
Directed transport born from chaos in asymmetric antidot structures
It is shown that a polarized microwave radiation creates directed transport
in an asymmetric antidot superlattice in a two dimensional electron gas. A
numerical method is developed that allows to establish the dependence of this
ratchet effect on several parameters relevant for real experimental studies. It
is applied to the concrete case of a semidisk Galton board where the electron
dynamics is chaotic in the absence of microwave driving. The obtained results
show that high currents can be reached at a relatively low microwave power.
This effect opens new possibilities for microwave control of transport in
asymmetric superlattices.Comment: 8 pages, 10 figure
- …
