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ABSTRACT

Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models.
Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev–Zel’dovich (SZ) signal,
the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly
reconstructed.
Aims. We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the
observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these
quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper.
Methods. We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D depro-
jection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated
galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and
dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the
Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on
the X-ray measurements collected with XMM-Newton.
Results. The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though
the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravita-
tional cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing
observations. We also observe that the covariance matrix of the potential for Abell 2142 reconstructed from XMM-Newton data sensi-
tively depends on the resolution of the deprojected grid and on the smoothing scale used in the deprojection.
Conclusions. We show that the Richardson-Lucy deprojection method can be effectively applied on a grid and that the projected
potential is well recovered from real and simulated data based on X-ray and SZ signal. The comparison between the reconstructed
potentials from the different observables provides additional information on the validity of the assumptions as function of the projected
radius.

Key words. galaxies: clusters: general – X-rays: galaxies: clusters – gravitational lensing: strong – gravitational lensing: weak

1. Introduction

As the most massive gravitationally bound systems in the
Universe, galaxy clusters provide information on the evolution
of the cosmic large-scale structures. The statistical properties
of the galaxy cluster population can be described as a function
of the clusters’ mass and redshift. The comparison to the mass
function, that is, the number density of dark-matter halos as a

function of the redshift, whose high-mass tail is highly sensi-
tive to the cosmological model (e.g., Press & Schechter 1974;
Tinker et al. 2008; Watson et al. 2013), is commonly used to
set cosmological constraints. Yet, cluster masses are not directly
observable, hence scaling relations are needed to convert the
observables (e.g., the gas temperature, the X-ray luminosity, or
the richness) to an estimate of cluster mass (see for instance,
Pratt et al. 2009; Andreon & Hurn 2010). Also, for the most
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relaxed clusters and in the regions of the cluster expected to
be in hydrostatic equilibrium, the hydrostatic mass derived from
X-ray measurements shows around 10% scatter between the true
cluster mass and its estimate (Applegate et al. 2016). Based on
such mass estimates, observations typically confirm the ΛCDM
cosmology (e.g., Planck Collaboration XIII 2016). However, the
scatter around the true mass may mask subtle deviations from
this fiducial model.

Here, we aim to derive a complementary method to charac-
terize galaxy clusters using their gravitational potentials rather
than their masses. Whether or not any cosmological constraints
conventionally derived from the mass function would benefit
from replacing the mass with the gravitational potential is the
main question that the project, which this paper is a part of, is
addressing. The expected advantage of the potential with respect
to the mass is that the potential can be derived from lensing
information without requiring the integration over an unknown
boundary surface and it is therefore closer to the observations
than the cluster mass. Thus, this may improve the sensitiv-
ity of the statistical methods based on the galaxy clusters as
cosmological probes.

The goal of this paper is to describe the method to recon-
struct a cluster potential from multiwavelength observations.
Upcoming papers will study in detail the systematic errors
related to the assumptions of the potential reconstruction method
(Tchernin et al. in prep.) and to the jointly reconstructed potential
(Huber et al. in prep.).

Observations of galaxy clusters are related to the gravita-
tional potential as follows: Velocity dispersions of the cluster
member galaxies measure the potential gradient, gravitational
lensing, the potential curvature, and the intra-cluster medium
(ICM) emitting the X-ray, and the Sunyaev–Zel’dovich (SZ)
signals directly trace the gravitational potential in hydrostatic
equilibrium (see e.g., Limousin et al. 2013, for a review). Fur-
thermore, each of these observables probes different scales:
while the X-ray and strong-lensing signals emerge from the
cluster center, the weak-lensing and thermal SZ signals trace
the potential further out. Combining observables, we expect to
recover cluster potentials on a wider range of radii (e.g., Planck
Collaboration Int. V 2013; Limousin et al. 2013).

To reconstruct cluster potentials, we use the Richardson-
Lucy deprojection algorithm (R–L, Lucy 1974, 1994). The
one-dimensional (1D) R–L method has been successfully tested
against other deprojection schemes (see for instance Tchernin
et al. 2015, where the outcome of the R–L deprojection was
compared to the onion-peeling deprojection method). The R–L
scheme offers the substantial advantage of allowing the depro-
jection of all lines-of-sight separately, and thus it is applicable
to incomplete data sets, allowing us to exclude from the analysis
data coming from regions where the assumptions made may not
hold (such as, at the cluster center or in the outskirts). This is an
important feature of this method, as discussed in Sect. 7.

So far, cluster potentials have been successfully recon-
structed from cluster observables in one dimension by treating
each observable separately: the SZ effect (Majer et al. 2013), the
galaxy kinematics (Sarli et al. 2014) and the X-ray signal (Konrad
et al. 2013). A complete joint analysis is however still missing.

In this paper, we outline our method to derive the jointly con-
strained two-dimensional (2D) gravitational potential within the
SaWLens framework (see e.g, Merten 2016). We first generalize
the R–L algorithm to a 2D grid, which will allow us to per-
form the joint analysis of the cluster potential pixel per pixel.
Then, to perform the joint analysis, we derive the covariance
matrices of the reconstructed potentials. The latter enters directly

into the fitting procedure as a relative weight for the different
contributions.

The structure of the paper is as follows: In Sect. 2.1, we
show the different steps leading from 1D to 2D R–L depro-
jection in the spherically symmetric case. In Sect. 2.2, we test
the deprojection algorithm on a simulated β-profile emission
map. We apply the method to unbinned data (Sect. 2.2.1) and
to data binned into a Voronoi tessellation (Sect. 2.2.2). The
gravitational potential reconstruction from X-ray and SZ obser-
vations is outlined in Sect. 3. In Sect. 4, we reconstruct the
projected gravitational potential of a simulated cluster based
on simulated X-ray and SZ data, and compare it to the true
projected gravitational potential. In Sect. 5 we reconstruct the
projected gravitational potential of the cluster Abell 2142, based
on real X-ray observations with XMM-Newton, and SZ obser-
vations with the Planck satellite. In Sect. 6 we outline the
method for the joint potential reconstruction, and we compute
the covariance matrix of the projected reconstructed poten-
tial of the cluster Abell 2142 based on its X-ray observations
with XMM-Newton. We then discuss and conclude in Sects. 7
and 8.

2. Deprojection on a 2D grid

2.1. The R–L deprojection method

2.1.1. Generalization of the 1D R–L to a grid

In this section, we review the important steps allowing us to pass
from the one- to the two-dimensional deprojection. We refer the
reader to the papers of Lucy (1974, 1994) for details on the R–L
method and to Konrad et al. (2013) for its application to the 1D
case.

Assuming spherical symmetry, the 1D spherical kernel is
(Konrad et al. 2013)

K(s|r) =
1

N(r)
r

√
r2 − s2

Θ(r2 − s2), (1)

where s is the projected and r the three-dimensional (3D) radius,
with s and r being related to the line-of-sight coordinate z by
r2 = s2 + z2. Θ is the Heaviside step function and N(r) a radially
dependent normalization constant. The 2D quantity g(s) can thus
be obtained by projecting the 3D function f (r) along the line-of-
sight,

g(s) =

∫
drK(s|r) f (r). (2)

To generalize these two equations to two dimensions, we define
the two axes s1 and s2 and set the origin of the coordinate system
at the center of the grid. To avoid difficulties with odd numbers
of pixels, we assign the coordinates to pixel centers.
The generalized 2D spherical kernel is then similar to Eq. (1),
but with s2(i, j) = s2

2(i) + s2
1( j), with (i, j) being the indices of

the matrix representing the grid.
The spherical kernel needs to be normalized on the grid,∫
ds1

∫
ds2K(s|r) = 1. (3)

If s1 and s2 are continuous quantities, this condition is satisfied
for N = 2πr2.

We note that the functions f and g need to be normalized
with respect to the integrals over their domains, therefore, all the
quantities shown in this paper are normalized to 1. The correct
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units can nevertheless be tracked through the deprojection pro-
cess and correctly recovered. However this is not needed for the
scheme of this paper.

2.1.2. Technical detail

– Choice of the binning in r
The discretization of s1 and s2 introduces discontinu-

ities in the deprojected profile. Indeed, since the integral over
the spherical kernel is performed over s2

1 + s2
2 < r2, the dis-

cretization of s1 and s2 causes wiggles in the normalization
(N from Eqs. (1) and (3)). Their strength depends on the
binning in the 3D radius r. This is illustrated in Fig. 1, where
N, computed for different binnings in r (we choose linear
intervals in r of ∆r = 1, 3 and 5 pixels) is plotted as a func-
tion of r. In order to illustrate the effects of the discretization
of s1 and s2, we compared the result of Eq. (3) for discrete
and continuous values of s1 and s2 (for better readibility, we
multiplied the results for ∆r = 1, 3 and 5 by 100, 10 and 1,
respectively). As expected, the smaller the binning in r, the
more wiggles appear. We thus need to choose bins in r such
as to minimize the effect of the discretization of s1 and
s2 while retaining enough information for deprojecting the
signal.

For this purpose, we choose to bin r such that the
quantity we want to deproject has an almost constant signal-
to-noise ratio (S/N). The binning in r needs to be optimized
for each observation.

– Upper limit for r
Due to the assumed spherical symmetry, only the pixels

of the grid satisfying r >
√

s2
1 + s2

2 can be used for the depro-
jection (see Eq. (1)). The largest allowed value of r equals the
radius of the largest circle enclosed in the grid. This implies
that the corners of the grid are ignored in the deprojection.
We can see this effect for instance in Fig. 2.

– Lower limit for r
The minimal value of r cannot be smaller than the side

length of a pixel, which corresponds to the spacing between
two consecutive values of s1(2) on the grid. For the reprojec-
tion, we set all pixels at a distance smaller than the first value
of r (r[0]) to the value of the reprojected profile at r[0].

– Choice of the parameters of the R–L deprojection
The R–L deprojection method depends on two parame-

ters, both introduced to avoid the overfitting: the regulariza-
tion parameter α and the smoothing scale L (see Lucy 1974,
1994, for details). While both parameters should be adapted
to the data, there is no general criterion to find the best value
for α (Lucy 1994). An approach to estimating the optimal
value of α for fixed L can be found in Majer et al. (2016).
We emphasize, however, that the choice of α and L influ-
ences the deprojection only very little for α > 0 and values
of L smaller than half of the size of the observed region. In
the study presented here, we have chosen both parameters to
depend on the cluster-centric distance: we take α inversely
proportional to the S/N, and set L to increase linearly with
the radius. This choice is motivated by the fact that high val-
ues of α give more weight to the regularization prior than
to the data. This implies that the deprojected profile will
carry the information of the regularization prior, which in
our case is a Gaussian with smoothing scale L (see Konrad
et al. 2013, for the actual form of the regularization term).
Therefore, the values of α and L should increase with the
distance from the cluster center, to be maximal where the

Fig. 1. Normalization of the spherical kernel (Eq. (3)) as a function of
the 3D radius r for three choices of binning in r and discretized val-
ues of s1 and s2. In red for a linear binning of ∆r = 1; in blue for a
linear binning of ∆r = 3 and in green for a linear binning of ∆r = 5.
These normalizations are compared to the results of Eq. (3) in the case
of continuous values of s1 and s2, in black. For better visibility, the nor-
malizations for ∆r = 1 and ∆r = 3 have been multiplied by 100 and 10,
respectively.

statistical fluctuations are the largest. This implies that the
values of these two parameters depend strongly on the bin-
ning in r. This is an optimized approach compared to the
previous reconstruction studies (Konrad et al. 2013; Majer
et al. 2013; Sarli et al. 2014), where the value of α was kept
constant over the entire cluster.

– Importance of the field-of-view of the observation used for
the potential reconstruction

The potential is recovered from the information con-
tained in the observables only, and thus restricted to the
domain of the data. For directly comparing the potentials
recovered from two different probes, like from SZ and
X-rays, we truncate the larger field-of-view here. However,
we note that this truncation is not necessary in our joint
analysis (see Sect. 6), where we combine constraints in the
full SaWLens framework (see e.g., Merten 2016) to jointly
reconstruct the potential using simultaneously information
pixel by pixel. Therefore, gaps in the potential reconstruc-
tion due to lack of data will be excluded from the joint
reconstruction.

– Assumed symmetry
In this paper, we only assume spherical symmetry. This

ideal case is chosen because it leads us to an understanding
of the covariance induced by the reconstruction method in
the simplest scenario (discussed in detail in Sect. 6 below).
This is clearly a first step prior to studying the more com-
plex correlations expected in the spheroidal case (which is
ongoing).

2.2. Application to a grid with a β-profile signal

We apply the R–L deprojection to a β-profile simulated map,
which is a good description of the ICM (e.g., King 1972), and
mimics the X-ray surface brightness (e.g., Jones & Forman
1984). This allows us to test the deprojection method in
the most ideal case. Then, increasing stepwise the difficulty
of the reconstruction, we apply the potential reconstruction
method to a simulated cluster (in Sect. 4) and to real data
(in Sect. 5).
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Fig. 2. Maps illustrating the result of the R–L deprojection algorithm on
simulated β-profile maps (Eq. (4)) assuming spherical symmetry, with-
out applying the Voronoi tessellation to the simulated data. Left: mean
map obtained by averaging the 100 initial maps; right: mean map result-
ing from the average of the 100 maps after applying the R–L de- and
reprojection. Both maps are dimensionless, have the same color scale
and are shown in logarithmic scale.

We produce 100 realizations of the β-profile map by adding
randomly sampled Poisson noise. The simulated maps have
100× 100 pixels, and the center of the “cluster” is set at the
center of the map (see the left panel of Fig. 2).

The β-profile as a function of x, the distance to the cluster
center, can be expressed as

n(x) = n0 ×

1 +

(
x
rc

)2(−3β+0.5)

, (4)

where we choose n0 = 200 counts, β = 0.67 and rc = 10 pixels.

2.2.1. Deprojection without applying Voronoi tessellation

We first apply the R–L deprojection to the unbinned β-profile
maps. The result of the R–L de- and reprojection is shown in
Fig. 2, where we show the mean of the 100 initial data maps and
the mean of the 100 resulting maps, after de- and reprojection.
To compare this result, in Fig. 3 we show profiles corresponding
to an azimuthal average of the mean of the 100 initial data maps
and of the mean of the 100 maps obtained after applying the
R–L de- and reprojection. To produce these profiles, we derive
one individual profile for each of the 100 simulated maps. From
these 100 individual profiles, we compute at each radial bin the
mean and the standard deviation. We then assign to each bin of
the combined profile the corresponding mean and standard devi-
ation. The other profiles shown in this study have been derived
in the same way.

As we can see, the deprojected profile follows exactly the
input data profile, except for the very last bin. We will return to
this issue in Sect. 7.

2.2.2. Deprojection of Voronoi-tessellated maps

In this section, we apply Voronoi tessellation prior to R–L
deprojection. To test whether the deprojection works for large
smoothing at large cluster-centric distance, we require 30 counts
per bin and 300 counts per bin. This illustrates the case of X-
ray observations, where the signal scales with the square of the
electron density, causing the outskirts of galaxy clusters to be

Fig. 3. Top: normalized profiles illustrating the results of the de- and
reprojection of the simulated β-profile map. Black: mean of the initial
data maps; red: mean of the resulting R–L deprojected and reprojected
maps. These profiles correspond to the azimuthal averaged of the maps
on the left and on the right of Fig. 2, respectively. Bottom: relative resid-
uals computed as ( fData(s) − fRecons(s))/ fData(s), with the corresponding
uncertainties obtained with error propagation.

very faint: applying Voronoi tessellation to such data leads to
substantial smoothing at large radii. In Fig. 4, we show the ini-
tial maps after applying the Voronoi tessellation. As we can see,
if the number of required counts per bin is large, the smoothing
is strong at large radii. To produce these binned maps, we used
the code of Eckert et al. (2015).

We now proceed to test the deprojection method on these
maps. We start by simulating 100 noisy β-profile maps, which
we bin using Voronoi tessellation (Eckert et al. 2015). Then,
we deproject each of these 100 binned maps and reproject
them. For a tessellation with 30 counts/bin, the map result-
ing from the mean of the 100 R–L deprojected and reprojected
maps is shown in the right panel of Fig. 5; while the mean
of the initial 100 maps is shown in the left panel. To help
the interpretation of the results, we azimuthally average these
maps to produce the profiles shown in Fig. 6. In Figs. 7 and
8, we show the results obtained for the data binned requiring
300 counts/bin. The left panel of Fig. 7 shows an interesting
pattern which is due to the large smoothing by the Voronoi
binning. Indeed, it represents the mean of the 100 noisy maps
binned in a similar way as the map shown in the right panel of
Fig. 4.

We can see that the deprojection works quite well over the
entire profile up to the very last bin, which again decreases too
fast compared to the initial data set.

3. Reconstruction of the 2D gravitational potential

Here, we outline the method to reconstruct the gravitational
potential of galaxy clusters from the cluster observables. We
shall focus on the cluster gravitational-potential reconstruction
using the X-ray emission of the galaxy clusters (see Konrad
et al. 2013, and for an application to the cluster Abell 1689,
Tchernin et al. 2015) and using the SZ signal (Majer et al. 2013).
The reconstruction of the gravitational potential from the veloc-
ity dispersion of the galaxies in the cluster (Sarli et al. 2014),
whose more complicated physics requires a deprojection ker-
nel that differs from the one of Eq. (1), will be considered in
a separate and dedicated study.
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Fig. 4. Maps illustrating the binning with Voronoi tessellation with 30
counts/bin (left) and 300 counts/bin (right) of one noisy β-profile map
(in logarithmic scale). Both maps were created with the code of Eckert
et al. (2015).

Fig. 5. Maps illustrating the result of the R–L deprojection algorithm
on a set of 100 simulated β-profile maps (Eq. (4)) assuming spherical
symmetry for a set of simulated data rebinned with a Voronoi tessel-
lation of 30 counts/bin. Left: mean map obtained by averaging the 100
rebinned initial maps; right: mean map resulting from the average of the
100 maps after applying the R–L deprojection and reprojection. Both
maps are dimensionless, have the same color scale, and are shown in
logarithmic scale.

To keep the covariance matrices easily manageable, they are
limited to initial data sets of approximately 100 × 100 pixels.
Thus, we rebin the grid used in this study to satisfy this
condition.

3.1. Method for reconstructing the cluster gravitational
potentials using X-ray data

The ICM is filled with hot plasma making clusters bright
extended X-rays sources due to thermal bremsstrahlung and line
emission.

Assuming hydrostatic equilibrium, information on the clus-
ter gravitational potential can be obtained from the physical
properties of the ICM. In hydrostatic equilibrium, the ICM gas
pressure P and the gravitational potential Φ are related by

∇P = −ρ∇Φ, (5)

where ρ is the gas density. All these quantities have a radial
dependence, not shown explicitly here for improved readibility.

Fig. 6. Top: normalized profiles illustrating the results of the de- and
reprojection of the simulated β-profile map rebinned using the Voronoi
tessellation with 30 counts/bin. Black: profile of the rebinned initial
data maps; Red: profile obtained by de- and reprojecting the initial
data maps. These profiles correspond to the azimuthal averaged of the
maps on the left and on the right of Fig. 5, respectively. Bottom: relative
residuals computed as in Fig. 3.

0.000013 0.000016 0.000025 0.000040 0.000072 0.000136 0.000262 0.000517 0.001021

Fig. 7. Maps illustrating the result of the R–L deprojection algorithm
on a set of 100 simulated β-profile maps (Eq. (4)) assuming spherical
symmetry, using the Voronoi tessellation with 300 counts/bin applied
to the simulated data. Left: mean map obtained by averaging the 100
rebinned initial maps; right: mean map resulting from the average of the
100 maps after applying the R–L deprojection and reprojection. Both
maps are dimensionless, have the same color scale, and are shown in
logarithmic scale.

We further assume that the plasma follows the polytropic
relation

P
P0

=

(
ρ

ρ0

)γ
, (6)

where the suffix 0 corresponds to the value of the pressure and
of the gas density at an arbitrary fiducial radius r0, and γ is the
polytropic exponent. Finally, we assume that the gas is ideal,

P =
ρ

m̄
kBT, (7)

where T is the gas temperature, m̄ is the mean mass of a gas
particle, and kB is Boltzmann’s constant.
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Fig. 8. Top: normalized profiles illustrating the results of the de- and
reprojection of the simulated β-profile map rebinned using the Voronoi
tessellation with 300 counts/bin. Black: profile of the rebinned initial
data maps; Red: profile obtained by de- and reprojecting the initial data
maps. These profiles correspond to the azimuthal average of the maps on
the left and on the right of Fig. 7, respectively. Bottom: relative residuals
computed as in Fig. 3.

The bolometric bremsstrahlung emissivity, jx, depends on
temperature and density as

jx ∝ T 1/2ρ2. (8)

Assuming that the thermal bremsstrahlung dominates the X-ray
emission, the X-ray emissivity can be related to the 3D gravita-
tional potential Φ, as derived in Konrad et al. (2013),

Φ ∝ j1/ηx , η =
3 + γ

2(γ − 1)
. (9)

This method returns an estimate of the 3D Newtonian grav-
itational potential Φ (using Eq.(6) of Konrad et al. 2013). We
point out that we do not need to extract the density and temper-
ature profiles of a cluster to reconstruct its potential, but only
the emissivity profile, which combines both quantities. To com-
pare this reconstructed gravitational potential with the observed
lensing potential, we reproject it according to

Ψ (s) ∝
∫

Φ(r)dz, (10)

where s is the projected radius, z the line-of-sight and r the 3D
radius.

We note that we only have access to the bremsstrahlung
emissivity projected along the line- of-sight, that is, the surface
brightness SBx(s)=

∫
dz jx(r). Therefore, before applying Eq. (9)

we first use the R–L method to deproject the surface brightness
SBx(s) and recover the emissivity jx(r).

3.2. Method for reconstructing the gravitational cluster
potentials using SZ observations

When cosmic microwave background (CMB) photons pass
through galaxy clusters, they can be upscattered by inverse
Compton scattering off the thermal electrons in the intraclus-
ter plasma. Their energy gain leaves an imprint on the photon
energy distribution: the energy spectrum of a small fraction of
the photons is blue-shifted with respect to the CMB spectrum.

This is called the (thermal) Sunyaev–Zel’dovich (SZ) effect,
which is observable at millimeter wavelengths. The signature left
on the CMB spectrum is proportional to the electron pressure
in the ICM gas integrated along the line-of-sight, the so-called
Compton-y parameter

y(s) =
kB

mec2σT

∫
dzT (r)ρ(r), (11)

where σT is the Thomson cross-section, me the electron mass
and T (r)ρ(r) the electron pressure.

Similar to the X-ray emission, the information provided by
the SZ signal can be used to estimate the 3D gravitational poten-
tial. The assumption on the plasma properties are the same as in
Eqs. (5)–(7).

Once the Compton-y parameter has been deprojected to
recover the electronic gas pressure P, the 3D gravitational
potential can be reconstructed from (Majer et al. 2013)

Φ ∝ P1/η , η =
γ

(γ − 1)
. (12)

This estimate of the Newtonian gravitational potential is then
reprojected following Eq. (10) to be compared to the observed
lensing potential.

4. Reconstruction of the projected gravitational
potential of the simulated g1-cluster

In this section, we derive the projected gravitational potential
of a simulated cluster at redshift 0.297 for which we have the
X-ray, SZ signal, and the true projected potential (the g1-cluster,
Meneghetti et al. 2010). The simulated maps cover a field of
view of 4 Mpc h−1 × 4 Mpc h−1 and the assumed cosmology
is ΛCDM with Ωm = 0.3, ΩΛ = 0.7 and H0 = 70 km (sMpc−1).
This simulation is actually the result of a re-simulation of the
numerical hydrodynamical simulations presented by Saro et al.
(2006), itself also extracted from a dark-matter-only simulation
from Yoshida et al. (2001). This simulation, re-simulated with
the N-body/SPH-code Gadget 2 (Springel 2005) includes both
dark matter and baryonic physics (e.g., gas cooling, star forma-
tion, chemical enrichment, see Meneghetti et al. 2010, for more
details).

The initial images have a dimension of 512× 512 pixels, each
pixel having a size of 11.16 kpc. We bin these maps by 8 pixels to
avoid potential problems in memory allocation for the computa-
tion of the covariance matrix (Sect. 6). We will describe how we
derived the 100 maps from the X-ray and SZ mock data below.

4.1. Simulated X-ray data

The X-ray emission is provided in erg s−1 for the energy band
0.13–13 keV. We simulate XMM-Newton mock observations
using the PIMMS interface1 (A Mission Count Rate Simulator).
For this purpose, we assume that the thermal emission of this
cluster follows a thin plasma model APEC (Smith et al. 2001)
with a metal abundance of 0.2 the Solar value, and a tempera-
ture of 5 keV (motivated by the averaged emitted power which is
of the order of 1044 erg s−1). This allows us to convert the flux
in erg (scm−2) to the number of counts that the XMM-Newton
satellite would detect in the energy band 0.5-2 keV assuming
an exposure time of 100ks. The number of counts (n) in each
1 https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/
w3pimms.pl
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pixel is expected to follow a Poisson distribution, with a stan-
dard deviation of

√
n. We assume that the sky background is at

the level estimated in Tchernin et al. (2016) in the specific case
of Abell 2142, that is, 5% of the sky background components
(composed of the cosmic X-ray background (CXB), the Galactic
halo, and the local hot bubble). For the non-X-ray background
(NXB) we use the model estimated for A2142 in Tchernin et al.
(2016), that we correct for the exposure time of the simulation.
For consistency, we place here the g1-cluster at the redshift of
Abell 2142.

We generate 100 maps resembling these mock data assuming
that the value at each pixel is drawn from a Poisson distri-
bution that accounts for both the statistical and the systematic
uncertainties.

4.2. Simulated SZ data

We produce NIKA2-like mock observations of the g1-cluster.
NIKA2 is a ground-based camera2 for microwave and submil-
limeter observations at 150 and 260 GHz (Calvo et al. 2016)
with an angular resolution of 18.5 arcsec full width at half
maximum (FWHM) at 150 GHz (the effect of the PSF cor-
responds to the size of a pixel of the rebinned map and is
therefore negligible). This choice is motivated by the small angu-
lar size of the g1-cluster on the sky, which would make it appear
point-like for Planck-like observations at 5–10 arcmin FWHM
angular resolution. For the simulation, we convolve the SZ sig-
nal map of the g1-cluster with a Gaussian point-spread function
of 18.5 arcsec FWHM. The variance of the white Gaussian
noise is inversely proportional to the exposure time and equal to
1.6 × 10−9 per beam for one hour of observation. In the present
analysis, we generate 100 simulated maps of the SZ emission
assuming an exposure time of 4 hr. We note that the 6.5 arcmin
field of view of NIKA2 corresponds to roughly ` = 3000 in
the CMB power spectrum. At those scales, the noise due to
CMB anisotropies (with a variance of the order of 10−14 in
Compton parameter) is negligible compared to the instrumental
noise.

4.3. Deprojection of the simulated X-ray and SZ signal

Assuming spherical symmetry, the result of the R–L de- and
reprojection of 100 simulated X-ray maps is shown in Fig. 9.
There, we show the average of these 100 maps before (left panel)
and after (right panel) the de- and reprojection. In Fig. 10, we
show the azimuthal profiles obtained from the average maps
shown in Fig. 9.

We then apply the same procedure to the simulated SZ sig-
nal. The resulting averaged maps are shown in Fig. 11, before
(left panel) and after (right panel) the de- and reprojection, while
the azimuthally averaged profiles of these maps are shown in
Fig. 12.

We note that the de- and reprojected quantities are normal-
ized during the deprojection procedure and that therefore only
the overall shape of the profiles in Figs. 9 and 11 contains a
physical meaning.

4.4. Reconstruction of the projected gravitational potential
from the X-ray and SZ signals of the simulated g1-cluster

We now reconstruct the projected gravitational potential from
the X-ray and SZ signal of the g1 cluster, using Eqs. (9)
2 http://ipag.osug.fr/nika2/Instrument.html

Fig. 9. Maps illustrating the result of the R–L deprojection algorithm
on a set of 100 simulated maps of the X-ray emission of the g1-cluster
assuming spherical symmetry. Left: mean map obtained by averaging
the 100 simulated X-ray maps of the g1-cluster; right: mean map result-
ing from the average of the 100 maps obtained after applying the R–L
de- and reprojection. Both maps are dimensionless, have the same color
scale (ranging from 2e–5 to 8.30e–3, from dark blue to light yellow),
and are shown in logarithmic scale.

Fig. 10. Top: normalized profiles illustrating the results of the de- and
reprojection of the X-ray emission of the g1-cluster. Red: profile of the
initial data maps; blue: profile obtained after de- and reprojection. These
profiles correspond to the azimuthal average of the maps on the left and
on the right of Fig. 9, respectively. Bottom: relative residuals computed
as in Fig. 3.

Fig. 11. Maps illustrating the result of the R–L deprojection algorithm
on a set of 100 simulated SZ maps of the g1-cluster assuming spherical
symmetry. Left: mean map obtained by averaging the 100 simulated SZ
maps of the g1-cluster; right: mean map resulting from the average of
the 100 maps obtained after applying the R–L de- and reprojection. Both
maps are dimensionless and have the same color scale (ranging from
6.0e–4 to 5.45e–3, from dark blue to light yellow).
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Fig. 12. Top: normalized profiles illustrating the results of the de- and
reprojection of the SZ emission of the g1-cluster. Black: profile of the
initial data maps; Red: profile obtained after de- and reprojection. These
profiles correspond to the azimuthal averaged of the maps on the left and
on the right of Fig. 11, respectively. Bottom: relative residuals computed
as in Fig. 3.

and (12), respectively. The 2D potentials recovered this way
for a polytropic index of 1.22 (Meneghetti et al. 2010) are
shown in Fig. 13. The reconstructed profiles are compared to
the true projected potential. To simplify this comparison, all
projected potentials have been set to zero at the virial radius
(Rvir ∼ 2600 kpc, Meneghetti et al. 2010). We note that a
shift by a constant will not affect our joint reconstruction,
as it aims at reproducing the lensing observables, which are
combinations of second derivatives of the projected potential
(see Sect. 6.1).

The residuals of the reconstruction can be seen in the bot-
tom panel of Fig. 13. While the potential recovered from the
SZ signal agrees with the true potential, the residuals between
the true potential and the potential reconstructed from the X-ray
data show larger variations. This is largely due to the sizes of
the error bars which are different in the potentials reconstructed
from the X-ray and from the SZ measurements. Interestingly, we
can see the same wiggly feature in the potential reconstructed
from SZ and X-rays data. This could be a hint that the hydro-
static equilibrium may not be valid in some regions of the cluster
and therefore, such a comparison can contain valuable informa-
tion about the physical state of the cluster. We will return to this
point in the discussion.

5. Reconstruction of the projected gravitational
potential of Abell 2142

Abell 2142 is a massive cluster (M200 ∼ 1.3 × 1015 M�, Munari
et al. 2014) located at a redshift of 0.09. There is evidence reveal-
ing it as a dynamically active cluster: it is accreting substructure
(Eckert et al. 2014), and sloshing activity has been observed to be
ongoing in the central region out to 1 Mpc (Rossetti et al. 2013).
Furthermore, the study of the galaxy distribution by Owers et al.
(2011) indicates the presence of minor mergers in the cluster.
Nevertheless, there are no hints for this cluster to be out of
hydrostatic equilibrium in its outskirts (Tchernin et al. 2016).
Therefore, this cluster may be a good candidate to apply the
potential reconstruction from X-ray and SZ measurements. We
will discuss the validity of the assumptions for this cluster in
more details in Sect. 7.2.

Fig. 13. Top: normalized azimuthally averaged projected gravitational
potential reconstructed from the X-ray (Eq. (9)) and from the SZ signal
(Eq. (12)) of the g1-cluster, compared to the true projected poten-
tial. Blue: projected potential reconstructed from the SZ signal; Red:
projected potential reconstructed from the X-ray signal; black: true
projected potential. Bottom: relative residuals computed as ( ftrue(s) −
fRecons(s))/ ftrue(s), with the corresponding uncertainties obtained with
error propagation and no uncertainties on ftrue(s).

5.1. X-ray observations of Abell 2142 with XMM-Newton

We use the data collected within the X-COP project (PI: D.
Eckert, Eckert et al. 2017). Owing to the pointing strategy of the
X-COP program, the data extend beyond R200. We first center
the map on the cluster center (at the position Ra: 239.5858 deg
and Dec: 27.2270 deg) and cut the image to 1000× 1000 pixels
(each pixel has a size of 4.25 kpc), limiting our field-of-view to
∼4250 kpc×∼4250 kpc. This allows us to analyze the cluster
up to a radius of ∼2125 kpc (which is of the order of R200 for
this cluster, see e.g., Table 4 in Tchernin et al. 2016). The initial
data map used here is shown in the left panel of Fig. 14. The
black circle represents the position of the center of the image
that has been used in the analysis, while the two green circles
are estimates of R500 (∼0.66R200 ≈ 1402 kpc) and of R200 (for
the smaller and the larger circle, respectively). The systematic
errors for this observation amount to 5% of the sky background
components (see Appendix B of Tchernin et al. 2016).

We rebin this map by averaging over 10× 10 pixel blocks
to satisfy the size limit set for computing the covariance
matrix. Thus, each pixel of the map we are using has a
∼42.5 kpc×∼42.5 kpc size and contains the photon counts of
100 pixels in the original data. We then apply the Voronoi code
by Eckert et al. (2015) to ensure 200 cts/bin. To simulate the 100
maps from this observation, we assume that the photon counts
in each pixel follow a Gaussian distribution whose mean is pro-
vided by the Voronoi code of Eckert et al. (2015) and whose
standard deviation accounts for both the statistical and the sys-
tematic uncertainties. The mean map resulting from these 100
maps is represented on the left panel of Fig. 15.

We then de- and reproject each of these 100 maps. The result
of this operation on the X-ray signal from Abell 2142 is shown
in the right panel of Fig. 15, for the averaged map and in Fig. 16,
for the azimuthally averaged profiles. We note that the PSF of
XMM-Newton can be characterized by a FWHM3 of 6.6 arcsec
(∼11.22 kpc for this cluster) for pn and with a smaller FWHM

3 http://heasarc.nasa.gov/docs/xmm/uhb/onaxisxraypsf.
html, Table 2.
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Fig. 14. Regions of the observations of Abell 2142 used in this analy-
sis. Left: XMM-Newton X-ray data in counts (ranging from 0, in black;
to 120 counts, in white), taken within the X-COP program (Eckert
et al. 2017) (in logarithmic scale); right: Planck SZ data in units of the
Compton-y parameter (ranging from 8.5e–7, in black; to 6.6e–5 counts,
in white), using the method of Hurier et al. (2013). The black circle rep-
resents the position of the image center used in our analysis, while the
two green circles outline R500 and R200.

Fig. 15. Maps illustrating the result of the R–L deprojection algorithm
on a set of 100 simulated X-ray maps of the Abell 2142 emission
(simulated from the observations of XMM-Newton) assuming spheri-
cal symmetry. Left: mean map obtained by averaging the 100 simulated
X-ray maps of Abell 2142; right: mean map resulting from the average
of the 100 maps obtained after applying the R–L de- and reprojec-
tion. Both maps are dimensionless, have the same color scale (ranging
from 2e–5 to 8.05e–3, from dark blue to light yellow) and are shown in
logarithmic scale.

for the two other EPIC instruments (with 6.0 and 4.5 arcsec,
for MOS-1 and MOS-2 respectively). The effect of the PSF is
thus smaller than the size of a pixel of the rebinned grid and is
negligible.

We point out that the low resolution of the rebinned grid
should not be an issue in the joint reconstruction because the
joint reconstruction is based on the combination with weak lens-
ing data, whose resolution is of the order of 100 kpc and with
strong lensing data, which supply high-resolution information at
the cluster center. We will return to this point in the discussion.

5.2. SZ observations of Abell 2142 with Planck

We use the millimeter observations taken by the Planck satel-
lite (Planck Collaboration Int. V 2013). This map has been
extracted at the frequencies 70 to 857 GHz using the MILCA
astrophysical component separation method (Hurier et al. 2013).
It has also been used in the analysis perfomed in Tchernin et al.
(2016), and we refer the reader interested in the details of the
extraction of this SZ map to Sect. 3.4 of that paper. We note
that the noise in MILCA SZ maps is Gaussian, correlated, and
inhomogeneous.

Fig. 16. Top: normalized profiles illustrating the results of the de- and
reprojection of the X-ray emission of Abell 2142. Black: profile of the
initial data maps; Red: profile obtained by de- and reprojecting the data
maps. These profiles correspond to the azimuthal average of the maps
on the left and on the right of Fig. 15, respectively. Bottom: relative
residuals computed as in Fig. 3.

The map initially had a side length of 20 R500, but we cut
it to approximately the dimension of the X-ray map (i.e., to a
map of 166× 166 pixels, with each pixel having 27.48 kpc size
and we rebinned them by 2 to avoid memory allocation issues in
the covariance matrix computation). The initial map used in this
analysis is shown in the left panel of Fig. 14: the black circle rep-
resents the image center used in our analysis, while the two green
circles outline our estimates of R500 and R200. As we can see, the
SZ map extends to slightly larger distances from the center than
the X-ray map (∼2125 kpc for the X-ray field-of-view compared
to ∼2280 kpc for the SZ field-of-view).

We produced 100 maps from this initial map by adding
simulated noise, assumed to be Gaussian, correlated, and inho-
mogeneous. The result of the de- and reprojection of the SZ
signal is shown in Fig. 17, for the averaged maps and in Fig. 18,
for the azimuthally averaged profiles. In these figures, to help the
comparison between the result of the de- and reprojection and the
input data, we show the result of the de- and reprojection after
convolution with Planck PSF. The Planck PSF is modelled here
as a Gaussian of 7.1 arcmin FWHM and thus affects the region
limited to 400 kpc around the cluster center.

5.3. Reconstruction of the 2D gravitational potential
of Abell 2142

We here reconstruct the projected potential of the cluster from
the X-ray (Eq. (9)) and from the SZ data (Eq. (12)) for a poly-
tropic index of 1.2. This results from the fit (γ = 1.2 ± 0.01) of
the density and pressure profiles of Abell 2142 (Tchernin et al.
2016) assuming a polytropic stratification of the intracluster gas
(Eq. (6)). This value is also in the range of polytropic indices
expected in observations (e.g., Eckert et al. 2013) and simula-
tions (e.g., Tozzi & Norman 2001). We discuss the validity of
the polytropic relation in the discussion section below.

The profiles resulting from the azimuthal average of the pro-
jected gravitational potential reconstructed from X-ray and SZ
measurements are shown in the top panel of Fig. 19. For com-
parison, we also plot the result of the NFW (Navarro et al.
1997) fit performed by Umetsu et al. (2009) based on the
observed lensing signal. The bottom panel shows the residuals
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Fig. 17. Maps illustrating the result of the R–L deprojection algorithm
on a set of 100 simulated maps drawn from the SZ data of Abell 2142
collected by the Planck satellite assuming spherical symmetry. Left:
mean map obtained by averaging the 100 simulated maps of the X-ray
emission of Abell 2142; right: mean map resulting from the average
of the 100 maps obtained after applying the R–L de- and reprojection.
Both maps are dimensionless and have the same color scale (ranging
from 1.06e–4 to 7.05e–4, from dark blue to light yellow).

Fig. 18. Top: normalized profiles illustrating the results of the de- and
reprojection of the SZ emission of Abell 2142. Black: profile of the ini-
tial data maps; red: profile obtained by de- and reprojecting the data
maps. These profiles correspond to the azimuthal averaged of the maps
on the left and on the right of Fig. 17, respectively. Bottom: relative
residuals computed as in Fig. 3.

between the two reconstructions, computed as ( fSZ(s)/ fXR(s))
and the uncertainties on this quantity are obtained by error
propagation.

Since the SZ observations are taken on an area slightly larger
than that of the X-ray observations (as shown in Fig. 14), the
potential recovered from the SZ signal extends to slightly larger
cluster-centric radii than the potential recovered from the X-ray
signal. Therefore, we have normalized the profiles in Fig. 19
to the radial range [0, 1.5] Mpc for the comparison. The two
reconstructions are consistent with the profile derived from the
NFW parameters of the fit to the gravitational-lensing obser-
vations by Umetsu et al. (2009) in the regions covered by the
data.

In the following section we show how the potentials recov-
ered from the different observables can be jointly used to
constrain the cluster potential despite the different fields- of-
view (which were kept the same in this section only to illustrate
the robustness of the reconstruction method, as mentioned in
Sect. 2.2.2).

Fig. 19. Top: normalized (over 1500 kpc), azimuthally averaged, pro-
jected gravitational potential reconstructed from the X-ray (Eq. (9))
and from the SZ signal (Eq. (12)) of Abell 2142 compared to the
NFW fit of the lensing data performed by Umetsu et al. (2009). Blue:
projected potential reconstructed from the SZ signal; Red: projected
potential reconstructed from the X-ray signal; Black: Fit of Umetsu et al.
(2009). Bottom: residuals between the potentials reconstructed from the
X-ray and SZ signal computed with ( fSZ(s)/ fXR(s)) and the uncertain-
ties on this quantity are obtained by error propagation. The dashed line
represents the case where fSZ(s) = fXR(s).

6. Joint potential reconstruction

6.1. Method for the joint reconstruction

Based on the gravitational potentials individually reconstructed
from the X-ray and SZ measurements, we can now show the
method for our joint potential reconstruction. This section aims
at outlining the method for the joint reconstruction, the results
and related discussions are reported in an accompanying study
(Huber et al. in prep.). The joint reconstruction method rests on
the implementation of a general minimization procedure within
the SaWLens framework (Merten et al. 2009; Merten 2016). In
its present state, the minimization implemented in the SaWLens
framework allows us to recover the projected gravitational poten-
tial from both strong and weak-lensing measurements, using a
χ2 minimization. The aim of the present section is to outline
the method used to further constrain the projected potential by
using additional cluster observables, namely the SZ effect, the
kinematics of member galaxies and the X-ray signal. The fit
converges once the lensing observables, that are a combina-
tion of second derivatives of the projected gravitational potential
(see e.g., Bartelmann & Schneider 2001), have been reproduced
successfully by the jointly reconstructed potential.

Relying on the assumption that all observables are measured
independently, a χ2 minimization for the joint reconstructed
potential ψ is performed as follows:

χ2
total (ψ) = χ2

weaklensing (ψ) + χ2
stronglensing (ψ) + χ2

X−ray (ψ)

+ χ2
SZ (ψ) + χ2

kinematics (ψ) + Reg (ψ) . (13)

As the contributions based on gravitational lensing and on the
regularization term (Reg) are described in detail in Merten
(2016), in the following we focus on the contributions from SZ,
X-ray, and galaxy kinematics.

At each pixel of the reconstructed grid, the contribution of
the individually reconstructed potentials to the total χ2 can be
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written as

χ2
i =

(
Aiψ̄i − ψ

)T C−1
i

(
Aiψ̄i − ψ

)
, (14)

where Ci is the covariance matrix and where each potential
ψi (i ∈ {SZ, X-ray, kinematics}) has been individually recon-
structed from the corresponding cluster observables (see Sect. 3
for the reconstruction based on SZ and X-ray observations, and
Sarli et al. (2014), for the reconstruction based on the velocity
dispersion of the galaxy members). The scaling factor Ai has
been introduced because the reconstructed potential (ψi) is nor-
malized in the reconstruction procedure. The optimization of this
scaling factor and the minimization of the χ2

i contribution will be
described in detail in Huber et al. (in prep.).

The covariance matrix of a data map of dimensions n× n has
the dimension n2 × n2. Each entry of this n2 × n2 matrix can be
computed as

Ci(x, x′) = 〈 (ψi(x) − 〈ψi(x)〉) × (ψi(x′) − 〈ψi(x′)〉) 〉, (15)

where 〈ψi(x)〉 denotes the mean of the value of the projected
potential ψi over a given number of realizations at the position x.
〈ψi(x)〉 is illustrated for instance in Fig. 20, where x represents
any position on this map. The correlation between the scatter at
any position x and x′ of this map is contained in the covariance
matrix computed with Eq. (15). In case of data without fluctu-
ations, we expect to obtain ψi(x) = 〈ψi(x)〉 for all x and thus
C(x, x′) = 0. For x = x′, C(x, x′) = σ2

x, implying that the diag-
onal values of the covariance matrix are equal to the variance of
the data points.

The application of this method on a simulated cluster and the
related results will be described in Huber et al. (in prep.).

6.2. Covariance matrix of the recovered projected
gravitational potential

As shown in the previous sections, the gravitational potential’s
reconstruction from SZ, X-ray, and kinematics implies a depro-
jection of the data, which introduces correlations between the
pixels of the reconstructed potential. Depending on the assumed
geometry of the cluster, this correlation will create patterns in
the covariance matrix Ci (Eq. (15)). Let us now study the corre-
lations introduced by the R–L deprojection procedure during the
reconstruction of the gravitational potential of a galaxy cluster
from its X-ray measurements.

To avoid overfitting the data, Lucy (1994) suggested to add a
regularization term to the fitting procedure performed in the R–L
algorithm. This additional term is characterized by two param-
eters: the strength of the regularization α, which calibrates the
importance of this regularization term with respect to the data;
and the smoothing scale L, which enters into the regularization
term via

P(r|r′) ∼ exp
(
−

(r − r′)2

L2

)
, (16)

(see Konrad et al. 2013, for details). We expect both the smooth-
ing scale L and the resolution of the deprojected grid to induce
correlations between pixels.

We investigate here how the resolution of the deprojected
grid can affect the correlation between pixels, and analyze the
correlations introduced by the smoothing parameter L, set in the
deprojection method. For this purpose, we study the covariance
matrix of the projected potential reconstructed from the X-ray
observations of the cluster Abell 2142 (reconstructed in Sect. 5).

Fig. 20. Map representing the result of the average projected potential
of Abell 2142 reconstructed from its X-ray measurements in Sect. 5. The
green (magenta) box indicate the pixels whose variance are enclosed in
the diagonal entries of the block matrices with the corresponding color
in Figs. 21– 23.

The covariance matrix for the 100 reconstructed potentials has
been derived from Eq. (15) for two different grid resolutions:

– High-resolution deprojected grid (HRG): the pixels of the
grid used for the deprojection have the same size as the pixels
of the input data grid (which is of dimension 100 × 100 in
our case, see Sect. 5).

– Low-resolution deprojected grid (LRG): the deprojected grid
has been arbitrarily chosen to contain 20 × 20 pixels. One
pixel of the deprojected grid contains 25 pixels of the input
data grid.
In Figs. 21–23, we show the results the covariance matrices

in the high- and low-resolution cases for a fixed smoothing scale
corresponding to the smallest distance between two pixels of the
deprojected grid (L = 1 and L = 0.2, for the HRG and the LRG,
respectively) and for a smoothing scale linearily increasing with
radius from 1 to 10 for the HRG and from 0.2 to 2 for the LRG.

We discuss the effects of L and of the grid resolution in the
discussion section.

7. Discussion

We have seen that the reconstruction method used in this analy-
sis allows us to recover the 2D gravitational potential of galaxy
clusters from X-ray and SZ observations.

Let us now discuss the quality of the potential reconstruc-
tions (Sect. 7.1), the validity of the assumptions made within
the reconstruction method (Sect. 7.2), and how this information
needs to be taken into account by the covariance matrix in the
joint reconstruction (Sect. 7.3). For these last points, we focus
our discussion on the cluster Abell 2142, which is our realistic
case. We will discuss these points at a qualitative level, a full
quantitative analysis of the effect of these assumptions on the
potential reconstruction of a simulated cluster can be found in
Tchernin et al. (in prep.).

7.1. General statements about the potential reconstruction
method

7.1.1. Note on the quality of the reconstruction

We showed the result of the deprojection of β-profiles for three
different cases of binning in Figs. 2–8: without Voronoi tes-
sellation, and with a Voronoi tessellation of 30 counts/bin and
300 counts/bin.
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Fig. 21. Covariance matrices of the projected gravitational potential
of the cluster Abell 2142 reconstructed from its X-ray observations
(Sect. 5), computed with Eq. (15). An illustration of a reconstructed
potential is shown in Fig. 20, with two selected lines of cells: one in
magenta, and one in green. The information on the variance in these
lines is contained in the diagonal entries of the block matrices with
the matching color in the present figure and in Figs. 22 and 23. The
results for the HGR are shown in the top panels. Left: smoothing param-
eter fixed to L = 1; right: smoothing parameter linearly increasing from
L = 1 to L = 10. LRG results are shown on the bottom panels. Left:
smoothing parameter fixed at L = 0.2; right: smoothing parameter lin-
early increasing from L = 0.2 to L = 2. The same color scale has
been used for the four panels, which runs from 0 (in black) to 0.004
(in white).

Fig. 22. Zoom into the central part of Fig. 21. The diagonal values of
the enclosed block matrix contain the variance of the cells indicated by
the green rectangle in Fig. 20. Same color bars as in Fig. 21: from black
to white indicating small to large fluctuations.

As expected from the deprojection procedure (see Sect. 2.1),
we lose the information on the signal maps in the field cor-
ners and the signal is poorly reproduced at the cluster center
(<2 pixels). We observed that there is a tendency for the very
last bin of the deprojected profile to fall below the input data.
This artifact is due to the normalization of the spherical kernel

Fig. 23. Zoom into the corner of Fig. 21. The diagonal values of the
enclosed block matrix contain the variance of the cells indicated by the
magenta rectangle in Fig. 20. Same color bars as in Fig. 21: from black
to white indicating small to large fluctuations.

Fig. 24. Azimuthally averaged projected gravitational potential pro-
files recovered from the simulated β-profile. Red: from a Voronoi-
tessellated map of 30 counts/bin; Blue: from a Voronoi-tessellated map
of 300 counts/bin. Here, it has been assumed that the β-profile rep-
resents the X-ray surface brightness. The potential profiles have been
reconstructed using Eq. (9).

(Eq. (1)), which, due to the pixelization of the grid, becomes
too large at the last radial bin. Indeed, given that s1 and s2 are
defined at the center of each pixel, the area of the grid that satis-
fies the condition s2

1 + s2
2 < r2 is actually sightly larger than the

expected value of 2πr2 for the last radial bin. Nevertheless, we
do not expect this effect to influence our potential reconstruction
significantly.

We also investigated the effect of the smoothing at large
cluster-centric radii produced by the Voronoi tessellation on
the reconstructed potential and showed that the resulting recon-
structed projected potential profiles have large error bars at
large radii. This is illustrated in Fig. 24, where we assumed
that the β-profile emission was representing X-ray data (moti-
vated by e.g., Jones & Forman 1984). As stated before, this
effect is nevertheless not expected to have any impact in the
joint reconstructed potential, as the individual potential val-
ues with large error bars are down-weighted in the combined
reconstruction.
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7.1.2. Note on SZ and X-ray reconstruction of the projected
potential of the simulated g1-cluster

In Sect. 4 we recovered the projected gravitational potential of
the simulated g1-cluster from X-ray and SZ mock data. Both
reconstructed potentials are consistent with the true projected
potential (see Fig. 13). We observed a radial trend between
the reconstructed and the true projected gravitational potentials,
which may indicate that the cluster is in a more complicated
physical state than the assumed equilibrium. Such a study can
thus be used to assess the physical state within the cluster, as
it was pointed out for instance in Tchernin et al. (2015) for the
cluster A1689. On the other hand, assuming that the equilibrium
assumptions are valid, a joint analysis could be used to constrain
the geometry of the cluster (see e.g., De Filippis et al. 2005).
For instance, joint analyses have successfully been applied to
constrain the triaxiality in several galaxy clusters (e.g., Morandi
et al. 2011, 2012; Morandi & Limousin 2012) using a paramet-
ric method. The comparison of the constraints obtained from
these analyses with our method is beyond the scope of our paper.
A comprehensive study of the joint analysis and of the related
systematics will be described in Huber et al. (in prep.).

7.1.3. Note on SZ and X-ray reconstruction of the projected
potential of the cluster Abell 2142

We reconstructed the projected gravitational potential of Abell
2142 from SZ and X-ray measurements in Sect. 5 and obtained
consistent results for the two reconstructed potentials (see
Fig. 19). Given that the uncertainties of the NFW parameters
were not taken into account in the lensing potential estimated
from Umetsu et al. (2009) and that the region outside ∼2000 kpc
is not testable with the data used in this analysis, any conclusion
about the state of the gas in this region would be speculative (see
Sect. 7.2.2).

7.2. Validity of the assumptions for Abell 2142

7.2.1. The geometry of the cluster

The assumption of intrinsic spherical cluster symmetry is quite
restrictive. The result of the de- and reprojection shows that a
large part of the information contained in the data is lost in the
implied averaging (see for instance Figs. 15 and 17). Neverthe-
less, we have shown that this strong symmetry assumption still
allows us to satisfactorily reconstruct potentials for the specific
cases of Abell 2142 (as well as for the g1-cluster). The effect
of this assumption on the reconstruction of the potential of more
disrupted clusters is under investigation (Tchernin et al. in prep.).

Furthermore, the generalization to spheroidal symmetry is
ongoing (Reblinsky 2000; Puchwein & Bartelmann 2006) and
has already been successfully tested in Majer et al. (2016) for the
reconstruction from SZ data. This generalization is crucial, as
we aim at recovering a joint projected gravitational potential on
a 2D map. However, even spheroidal symmetry will introduce
correlations between the pixels that should be carefully taken
into account in the joint analysis.

7.2.2. The equilibrium assumptions

The gravitational potential reconstruction from X-ray, SZ and
kinematics is based on the hydrostatic equilibrium and the poly-
tropic stratification assumptions. Those strong assumptions are
not expected to be valid accross the entire observable range of
cluster-centric radii. We want to discuss here how this may affect
the joint reconstruction of the potential of Abell 2142.

– Due to mixing of the ICM with the infalling material from
the large-scale structure, simulations tend to show that the
equilibrium assumptions are not valid in the cluster outskirts
(see, e.g., Reiprich et al. 2013; Nagai & Lau 2011; Vazza
et al. 2013; Zhuravleva et al. 2013). In the case of Abell
2142, the gas in the cluster seems to be in hydrostatic equi-
librium with the gravitational potential in the region from
400 kpc out to about 3 Mpc (∼2R500). This region was tested
in Tchernin et al. (2016) based on the same measurements
as those used here and no evidence for a deviation from
the hydrostatic equilibrium was found (see e.g., the recov-
ered hydrostatic mass of the cluster in Fig. 13 of Tchernin
et al. 2016). The region inside 400 kpc was removed from
the analysis due to the large PSF of the Planck instrument.

– Based on the spectroscopic analysis of the XMM-Newton
measurements performed in Tchernin et al. (2016), the tem-
perature profile increases out to 500 kpc and then decreases
with the cluster-centric radius (see Fig. 3 in Tchernin et al.
2016). This implies that the temperature in the central region
cannot be approximated by a polytropic stratification. Thus,
the polytropic stratification is not valid in the region inside
500 kpc but valid at larger radii, as shown in Fig. 25. The
polytropic exponent has been set here to agree with a fit
of the density and pressure profiles assuming polytropic
stratification.
The gravitational potential derived from lensing observations

has been recovered without requiring equilibrium assumptions
(see e.g., Bartelmann & Schneider 2001, for a review). There-
fore the comparison of the lensing potential with the potentials
reconstructed from X-ray and SZ observations carries interesting
information about the physical state of the cluster. As the R–L
deprojection algorithm is “local”, in the sense that the regions
at different cluster-centric radii are not mixed in the deprojec-
tion, this comparison allows us to determine the regions where
the assumptions made do not hold. Such regions can be removed
from our analysis or can be down-weighted in the joint recon-
struction by adapting the covariance matrix, as discussed below.
In the present case, the potentials recovered from X-ray, SZ and
lensing are compared in Fig. 20. As we can see, all potentials
are consistent. This is unexpected at the cluster center, as the
polytropic assumption is not valid there. However, the potential
being smoothed by the projection, this may hide the expected
discrepancy near the center. Nevertheless, in the joint reconstruc-
tion, the central region of the reconstructed potentials needs to be
down-weighted with respect to the lensing potential, as described
in the following section.

7.3. Covariance matrix

The covariance matrix is one of the most important quantities
for our joint reconstruction, as it contains the information about
the quality of each individual reconstruction, pixel per pixel.
Here we want to discuss how the different assumptions and
the technical details of the observations (resolution of the grid,
deprojection of the data) affect the overall shape of the covari-
ance matrix. The reconstruction requires the deprojection of the
data and, as we have seen in Sect. 6.2, the assumption on the
geometry of the cluster, the smoothing scale, and the resolution
of the deprojected grid affect the covariance matrix.

– Effect of the smoothing scale on the correlation between
pixels

The effect of the smoothing scale is two-fold: On one
hand, it introduces correlations between pixels; on the other,
it reduces fluctuations (which at the same time reduce the
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Fig. 25. Comparison of the deprojected temperature profile from Abell
2142 with the temperature profile derived assuming polytropic stratifi-
cation and a polytropic index of γ = 1.20 ± 0.01. Both the deprojected
spectroscopic temperature profile and the spectroscopic density profile
are taken from Tchernin et al. (2016).

correlations, see Eq. (15)). Thus, these two effects act in
opposite directions, and the relative value of L with respect
to the dimension of the grid determines which effect dom-
inates. To test this statement, we kept the value of L fixed
at the distance between two neighboring pixels (to simu-
late the case with negligible correlation), and computed the
covariance matrices. We then repeated this exercise for a
smoothing parameter varying linearly with radius from the
distance between two neighboring pixels to one tenth of the
grid dimension. This is illustrated in Figs. 21–23. The com-
parison of the left and right panels of Figs. 21–23 clearly
shows that the covariance matrix reaches higher values when
L is large. We also checked that this trend changes when we
continue to increase the value of L. Indeed, for a value of L
comparable for instance to the half of the grid dimension, the
correlation between pixels is reduced. This is due to the fact
that this smoothing procedure acts like an averaging process:
If L is as large as half of the dimension of the map, the fluctu-
ations expected at large distance from the cluster center will
be less pronounced and the value of the factor (x(i) − 〈x(i)〉)
in Eq. (15) will be small.

– Effect of the grid resolution on the correlation between pixels
The resolution of the deprojected grid has a consider-

able effect on the covariance matrix. This becomes obvious
comparing the top (HRG) and bottom (LRG) panels of
Figs. 21– 23. In the cases shown, a pixel of the LRG grid
bundles 25 pixels of the HRG grid. The decrease of the cor-
relation between pixels when passing from HRG to LRG is
expected on the one hand because the statistics per pixel
improves, and on the other hand, because the value at each
pixel in the LRG corresponds to the average over 25 pix-
els of the HRG, both effects resulting in the decrease of the
fluctuations in the LRG.

– Some considerations about the shape of the block matrices
contained in the covariance matrix

We note that all four covariance matrices in Fig. 21 have
smaller values in the center than in the corners. It is indeed
expected that the covariance matrix elements are largest
where the projected potential is less constrained by the data,
that is, at large distance from the center and in the corners,
where the information about the initial data map is lost due
to the deprojection procedure (see Sect. 2.1 for a detailed
description of the deprojection method). The overall shape
of the covariance matrix can be understood considering its

diagonal elements. For instance, we indicated in Fig. 22 the
block matrix whose diagonal elements correspond to the
variance of the potential values in the region delimited by
the same color in Fig. 20. As shown there, the correlations
decrease towards the center, where the potential values are
largest, while the correlations increase in the cluster out-
skirts, where the uncertainties in the reconstructed potential
are largest.

– Effect of the assumed symmetry on the correlation between
pixels

As the R–L method allows the deprojection of each
line of sight individually, we could expect the deprojected
data points to be uncorrelated. However, this is not what
we observed. Indeed, the assumption of spherical symmetry
introduces correlations between all values having the same
projected radius. Therefore, the nondiagonal entries of the
covariance matrix contain nonzero values.

Since the deprojection is the first step of the potential
reconstruction, we expect to see similar effects in the covari-
ance matrices derived from the SZ signal (see for instance
Eq. (1) and Sect. 3). The deprojection kernel in the case
of the kinematics data is slightly different from the spher-
ical kernel used for X-ray and SZ reconstruction (Sarli et al.
2014). Therefore, the covariance matrix from kinematic
mesurements may be different. This study is ongoing and
will be described in a follow-up paper.

– Effect of the assumed physical state of the cluster on the
correlation between pixels

The effects of deviations from equilibrium assumptions
on the potential reconstruction cannot be computed with
Eq.(15), but rather, it is an additional piece of information
which needs to be added to the covariance matrix prior to
the joint reconstruction. In the case of Abell 2142, the values
of the covariance matrices for the potentials reconstructed
from the SZ and X-ray measurements (with Eq. (15)) need
to be adapted at the cluster center to take into account that
the polytropic assumption is known not to be valid there. The
overall modification of the covariance matrices needs to be
done in a consistent way for each individual contribution χ2

i
in Eq. (13) to ensure the convergence of the minimization
procedure toward a jointly constrained potential. This needs
to be done carefully, once each single contribution to χ2

total is
known.

8. Conclusion

We generalized the R–L deprojection method to a grid. We tested
this method for the first time on the potential reconstruction from
SZ and X-ray data on a 2D grid. We showed that the gravitational
potential reconstructions of individual clusters based on their
X-ray, SZ and gravitational lensing observations are consistent.
The quality of the reconstruction from each observable sepa-
rately, contained in the covariance matrix of the reconstructed
potential, is a key element of the joint reconstruction. We also
showed how the assumption on the intrinsic cluster symmetry,
the smoothing scale, and the resolution of the deprojected grid
affect the covariance matrix.

The goal is to combine each of these contributions weighted
by the quality of its own reconstruction. The inclusion of the
contribution of each observable to the total χ2 minimization in
the SaWLens framework is ongoing (Huber et al. in prep.).

The results of the reconstruction of the potentials of the
simulated g1-cluster and of the real Abell 2142 cluster are
very encouraging. These reconstructions have been obtained
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assuming spherical symmetry, hydrostatic equilibrium, and poly-
tropic stratification. A dedicated analysis of the effects of
these assumptions on the reconstructed potential is studied in
Tchernin et al. (in prep.). We shall generalize this work to
spheroidal symmetry (e.g., Puchwein & Bartelmann 2006;
Reblinsky 2000; Majer et al. 2016) and we aim at dropping
the polytropic stratification assumption to recover more realistic
cluster potentials.

This study is part of a larger project whose main goal is
to perform the joint potential reconstruction of galaxy clusters
(from the CLASH sample for instance, Postman et al. 2012),
based on all cluster observables.
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