307 research outputs found
Intra-Day Variability and the Interstellar Medium Towards 0917+624
The intra-day variable source 0917+624 displays annual changes in its
timescale of variability. This is explained in terms of a scintillation model
in which changes in the variability timescale are due to changes in the
relative velocity of the scintillation pattern as the Earth orbits the sun.
(see also astro-ph/0102050)Comment: 4 pages, 1 figure. Accepted for A&A Letter
Rapidly Evolving Circularly Polarized Emission during the 1994 Outburst of GRO J1665-40
We report the detection of circular polarization during the 1994 outburst of
the Galactic microquasar GRO J1655-40. The circular polarization is clearly
detected at 1.4 and 2.4GHz, but not at 4.8 and 8.4GHz, where its magnitude
never exceeds 5 mJy. Both the sign and magnitude of the circular polarization
evolve during the outburst. The time dependence and magnitude of the polarized
emission can be qualitatively explained by a model based on synchrotron
emission from the outbursts, but is most consistent with circular polarization
arising from propagation effects through the relativistic plasma surrounding
the object.Comment: 8 pages, 3 figs., A&A accepte
On the reliability of polarization estimation using Rotation Measure Synthesis
We benchmark the reliability of the Rotation Measure (RM) synthesis algorithm
using the 1005 Centaurus A field sources of Feain et al. (2009). The RM
synthesis solutions are compared with estimates of the polarization parameters
using traditional methods. This analysis provides verification of the
reliability of RM synthesis estimates. We show that estimates of the
polarization parameters can be made at lower S/N if the range of RMs is
bounded, but reliable estimates of individual sources with unusual RMs require
unconstrainted solutions and higher S/N.
We derive from first principles the statistical properties of the
polarization amplitude associated with RM synthesis in the presence of noise.
The amplitude distribution depends explicitly on the amplitude of the
underlying (intrinsic) polarization signal. Hence it is necessary to model the
underlying polarization signal distribution in order to estimate the
reliability and errors in polarization parameter estimates. We introduce a
Bayesian method to derive the distribution of intrinsic amplitudes based on the
distribution of measured amplitudes.
The theoretically-derived distribution is compared with the empirical data to
provide quantitative estimates of the probability that an RM synthesis solution
is correct as a function of S/N. We provide quantitative estimates of the
probability that any given RM synthesis solution is correct as a function of
measured polarized amplitude and the intrinsic polarization amplitude compared
to the noise.Comment: accepted for publication in the Astrophysical Journa
A High-Frequency Search for Pulsars Within the Central Parsec of SgrA*
We report results from a deep high-frequency search for pulsars within the
central parsec of Sgr A* using the Green Bank Telescope. The observing
frequency of 15 GHz was chosen to maximize the likelihood of detecting normal
pulsars (i.e. with periods of \,ms and spectral indices of ) close to Sgr A*, that might be used as probes of gravity in the
strong-field regime; this is the highest frequency used for such pulsar
searches of the Galactic Center to date. No convincing candidate was detected
in the survey, with a detection threshold of Jy
achieved in two separate observing sessions. This survey represents a
significant improvement over previous searches for pulsars at the Galactic
Center and would have detected a significant fraction ($\gtrsim 5%) of the
pulsars around Sgr A*, if they had properties similar to those of the known
population. Using our best current knowledge of the properties of the Galactic
pulsar population and the scattering material toward Sgr A*, we estimate an
upper limit of 90 normal pulsars in orbit within the central parsec of Sgr A*.Comment: 10 pages, 7 figures, accepted for publication in the ApJ
The Performance and Calibration of the CRAFT Fly's Eye Fast Radio Burst Survey
Since January 2017, the Commensal Real-time ASKAP Fast Transients survey
(CRAFT) has been utilising commissioning antennas of the Australian SKA
Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly's eye mode.
This is the first extensive astronomical survey using phased array feeds
(PAFs), and a total of 20 FRBs have been reported. Here we present a
calculation of the sensitivity and total exposure of this survey, using the
pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as
calibrators. The design of the survey allows us to benchmark effects due to PAF
beamshape, antenna-dependent system noise, radio-frequency interference, and
fluctuations during commissioning on timescales from one hour to a year.
Observation time, solid-angle, and search efficiency are calculated as a
function of FRB fluence threshold. Using this metric, effective survey
exposures and sensitivities are calculated as a function of the source counts
distribution. The implied FRB rate is significantly lower than the
\,sky\,day calculated using nominal exposures and
sensitivities for this same sample by \citet{craft_nature}. At the Euclidean
power-law index of , the rate is \,sky\,day above a threshold of \,Jy\,ms, while for the best-fit index for this sample of , it is
\,sky\,day above a threshold of \,Jy\,ms. This strongly suggests that these calculations be performed
for other FRB-hunting experiments, allowing meaningful comparisons to be made
between them.Comment: 21 pages, 15 figures, 2 tables, accepted for publication in PAS
Observation of the Faraday effect via beam deflection in a longitudinal magnetic field
We report the observation of the magnetic field induced circular differential
deflection of light at the interface of a Faraday medium. The difference in the
angles of refraction or reflection between the two circular polarization
components is a function of the magnetic field strength and the Verdet
constant. The reported phenomena permit the observation of the Faraday effect
not via polarization rotation in transmission, but via changes in the
propagation direction in refraction or in reflection. An unpolarized light beam
is predicted to split into its two circular polarization components. The light
deflection arises within a few wavelengths at the interface and is therefore
independent of pathlength
Observations of Intrahour Variable Quasars: Scattering in our Galactic Neighbourhood
Interstellar scintillation (ISS) has been established as the cause of the
random variations seen at centimetre wavelengths in many compact radio sources
on timescales of a day or less. Observations of ISS can be used to probe
structure both in the ionized insterstellar medium of the Galaxy, and in the
extragalactic sources themselves, down to microarcsecond scales. A few quasars
have been found to show large amplitude scintillations on unusually rapid,
intrahour timescales. This has been shown to be due to weak scattering in very
local Galactic ``screens'', within a few tens of parsec of the Sun. The short
variability timescales allow detailed study of the scintillation properties in
relatively short observing periods with compact interferometric arrays. The
three best-studied ``intrahour variable'' quasars, PKS 0405-385, J1819+3845 and
PKS 1257-326, have been instrumental in establishing ISS as the principal cause
of intraday variability at centimetre wavelengths. Here we review the relevant
results from observations of these three sources.Comment: 10 pages, 4 figures, to appear in Astronomical and Astrophysical
Transaction
- âŠ