143 research outputs found
New tumour entities in the 4th edition of the World Health Organization Classification of Head and Neck tumours: odontogenic and maxillofacial bone tumours.
The latest (4th) edition of the World Health Organization Classification of Head and Neck tumours has recently been published with a number of significant changes across all tumour sites. In particular, there has been a major attempt to simplify classifications and to use defining criteria which can be used globally in all situations, avoiding wherever possible the use of complex molecular techniques which may not be affordable or widely available. This review summarises the changes in Chapter 8: Odontogenic and maxillofacial bone lesions. The most significant change is the re-introduction of the classification of the odontogenic cysts, restoring this books status as the only text which classifies and defines the full range of lesions of the odontogenic tissues. The consensus group considered carefully the terminology of lesions and were concerned to ensure that the names used properly reflected the best evidence regarding the true nature of specific entities. For this reason, this new edition restores the odontogenic keratocyst and calcifying odontogenic cyst to the classification of odontogenic cysts and rejects the previous terminology (keratocystic odontogenic tumour and calcifying cystic odontogenic tumour) which were intended to suggest that they are true neoplasms. New entities which have been introduced include the sclerosing odontogenic carcinoma and primordial odontogenic tumour. In addition, some previously poorly defined lesions have been removed, including the ameloblastic fibrodentinoma, ameloblastic fibro-odontoma, which are probably developing odontomas, and the odontoameloblastoma, which is not regarded as an entity. Finally, the terminology "cemento" has been restored to cemento-ossifying fibroma and cemento-osseous dysplasias, to properly reflect that they are of odontogenic origin and are found in the tooth-bearing areas of the jaws
Early predictors of impaired social functioning in male rhesus macaques (Macaca mulatta)
Autism spectrum disorder (ASD) is characterized by social cognition impairments but its basic disease mechanisms remain poorly understood. Progress has been impeded by the absence of animal models that manifest behavioral phenotypes relevant to ASD. Rhesus monkeys are an ideal model organism to address this barrier to progress. Like humans, rhesus monkeys are highly social, possess complex social cognition abilities, and exhibit pronounced individual differences in social functioning. Moreover, we have previously shown that Low-Social (LS) vs. High-Social (HS) adult male monkeys exhibit lower social motivation and poorer social skills. It is not known, however, when these social deficits first emerge. The goals of this study were to test whether juvenile LS and HS monkeys differed as infants in their ability to process social information, and whether infant social abilities predicted later social classification (i.e., LS vs. HS), in order to facilitate earlier identification of monkeys at risk for poor social outcomes. Social classification was determined for N = 25 LS and N = 25 HS male monkeys that were 1–4 years of age. As part of a colony-wide assessment, these monkeys had previously undergone, as infants, tests of face recognition memory and the ability to respond appropriately to conspecific social signals. Monkeys later identified as LS vs. HS showed impairments in recognizing familiar vs. novel faces and in the species-typical adaptive ability to gaze avert to scenes of conspecific aggression. Additionally, multivariate logistic regression using infant social ability measures perfectly predicted later social classification of all N = 50 monkeys. These findings suggest that an early capacity to process important social information may account for differences in rhesus monkeys’ motivation and competence to establish and maintain social relationships later in life. Further development of this model will facilitate identification of novel biological targets for intervention to improve social outcomes in at-risk young monkeys
Mandibular Actinomyces osteomyelitis complicating florid cemento-osseous dysplasia: case report
Traumatic bone cyst of the mandible of possible iatrogenic origin: a case report and brief review of the literature
The traumatic bone cyst (TBC) is an uncommon nonepithelial lined cavity of the jaws. The lesion is mainly diagnosed in young patients most frequently during the second decade of life. The majority of TBCs are located in the mandibular body between the canine and the third molar. Clinically, the lesion is asymptomatic in the majority of cases and is often accidentally discovered on routine radiological examination usually as an unilocular radiolucent area with a "scalloping effect". The definite diagnosis of traumatic cyst is invariably achieved at surgery. Since material for histologic examination may be scant or non-existent, it is very often difficult for a definite histologic diagnosis to be achieved. We present a well documented radiographically and histopathologically atypical case of TBC involving the ramus of the mandible, which is also of possible iatrogenic origin. The literature is briefly reviewed
Esomeprazole and aspirin in Barrett's oesophagus (AspECT): a randomised factorial trial
Background Oesophageal adenocarcinoma is the sixth most common cause of cancer death worldwide and Barrett’s oesophagus is the biggest risk factor. We aimed to evaluate the efficacy of high-dose esomeprazole proton-pump inhibitor (PPI) and aspirin for improving outcomes in patients with Barrett’s oesophagus. Methods The Aspirin and Esomeprazole Chemoprevention in Barrett’s metaplasia Trial had a 2 × 2 factorial design and was done at 84 centres in the UK and one in Canada. Patients with Barrett’s oesophagus of 1 cm or more were randomised 1:1:1:1 using a computer-generated schedule held in a central trials unit to receive high-dose (40 mg twice-daily) or low-dose (20 mg once-daily) PPI, with or without aspirin (300 mg per day in the UK, 325 mg per day in Canada) for at least 8 years, in an unblinded manner. Reporting pathologists were masked to treatment allocation. The primary composite endpoint was time to all-cause mortality, oesophageal adenocarcinoma, or high-grade dysplasia, which was analysed with accelerated failure time modelling adjusted for minimisation factors (age, Barrett’s oesophagus length, intestinal metaplasia) in all patients in the intention-to-treat population. This trial is registered with EudraCT, number 2004-003836-77. Findings Between March 10, 2005, and March 1, 2009, 2557 patients were recruited. 705 patients were assigned to low-dose PPI and no aspirin, 704 to high-dose PPI and no aspirin, 571 to low-dose PPI and aspirin, and 577 to highdose PPI and aspirin. Median follow-up and treatment duration was 8·9 years (IQR 8·2–9·8), and we collected 20 095 follow-up years and 99·9% of planned data. 313 primary events occurred. High-dose PPI (139 events in 1270 patients) was superior to low-dose PPI (174 events in 1265 patients; time ratio [TR] 1·27, 95% CI 1·01–1·58, p=0·038). Aspirin (127 events in 1138 patients) was not significantly better than no aspirin (154 events in 1142 patients; TR 1·24, 0·98–1·57, p=0·068). If patients using non-steroidal anti-inflammatory drugs were censored at the time of first use, aspirin was significantly better than no aspirin (TR 1·29, 1·01–1·66, p=0·043; n=2236). Combining highdose PPI with aspirin had the strongest effect compared with low-dose PPI without aspirin (TR 1·59, 1·14–2·23, p=0·0068). The numbers needed to treat were 34 for PPI and 43 for aspirin. Only 28 (1%) participants reported study-treatment-related serious adverse events. Interpretation High-dose PPI and aspirin chemoprevention therapy, especially in combination, significantly and safely improved outcomes in patients with Barrett’s oesophagus
Germline variation in inflammation-related pathways and risk of Barrett's oesophagus and oesophageal adenocarcinoma
Esophageal adenocarcinoma (EA) incidence has risen sharply in Western countries over recent decades. Local and systemic inflammation, operating downstream of disease-associated exposures, is considered an important contributor to EA pathogenesis. Several risk factors have been identified for EA and its precursor, Barrett’s esophagus (BE), including symptomatic reflux, obesity, and smoking. The role of inherited genetic susceptibility remains an area of active investigation. To explore whether germline variation related to inflammatory processes influences susceptibility to BE/EA, we used data from a genome-wide association study (GWAS) of 2,515 EA cases, 3,295 BE cases, and 3,207 controls. Our analysis included 7,863 single nucleotide polymorphisms (SNPs) in 449 genes assigned to five pathways: cyclooxygenase (COX), cytokine signaling, oxidative stress, human leukocyte antigen, and NFκB. A principal components-based analytic framework was employed to evaluate pathway-level and gene-level associations with disease risk. We identified a significant signal for the COX pathway in relation to BE risk (P=0.0059, FDR q=0.03), and in gene-level analyses found an association with MGST1 (microsomal glutathione-S-transferase 1; P=0.0005, q=0.005). Assessment of 36 MGST1 SNPs identified 14 variants associated with elevated BE risk (q<0.05). Of these, four were subsequently confirmed (P<5.5 × 10−5) in a meta-analysis encompassing an independent set of 1,851 BE cases and 3,496 controls. Three of these SNPs (rs3852575, rs73112090, rs4149204) were associated with similar elevations in EA risk. This study provides the most comprehensive evaluation of inflammation-related germline variation in relation to risk of BE/EA, and suggests that variants in MGST1 influence disease susceptibility
The Role of Zinc in the Modulation of Neuronal Proliferation and Apoptosis
Although a requirement of zinc (Zn) for normal brain development is well documented, the extent to which Zn can modulate neuronal proliferation and apoptosis is not clear. Thus, we investigated the role of Zn in the regulation of these two critical events. A low Zn availability leads to decreased cell viability in human neuroblastoma IMR-32 cells and primary cultures of rat cortical neurons. This occurs in part as a consequence of decreased cell proliferation and increased apoptotic cell death. In IMR-32 cells, Zn deficiency led to the inhibition of cell proliferation through the arrest of the cell cycle at the G0/G1 phase. Zn deficiency induced apoptosis in both proliferating and quiescent neuronal cells via the intrinsic apoptotic pathway. Reductions in cellular Zn triggered a translocation of the pro-apoptotic protein Bad to the mitochondria, cytochrome c release, and caspase-3 activation. Apoptosis is the resultant of the inhibition of the prosurvival extracellular-signal-regulated kinase, the inhibition of nuclear factor-kappa B, and associated decreased expression of antiapoptotic proteins, and to a direct activation of caspase-3. A deficit of Zn during critical developmental periods can have persistent effects on brain function secondary to a deregulation of neuronal proliferation and apoptosis
Germline variation in the insulin-like growth factor pathway and risk of Barrett's esophagus and esophageal adenocarcinoma
Genome-wide association studies (GWAS) of esophageal adenocarcinoma (EAC) and its precursor, Barrett’s esophagus (BE), have uncovered significant genetic components of risk, but most heritability remains unexplained. Targeted assessment of genetic variation in biologically relevant pathways using novel analytical approaches may identify missed susceptibility signals. Central obesity, a key BE/EAC risk factor, is linked to systemic inflammation, altered hormonal signaling and insulin-like growth factor (IGF) axis dysfunction. Here, we assessed IGF-related genetic variation and risk of BE and EAC. Principal component analysis was employed to evaluate pathway-level and gene-level associations with BE/EAC, using genotypes for 270 single-nucleotide polymorphisms (SNPs) in or near 12 IGF-related genes, ascertained from 3295 BE cases, 2515 EAC cases and 3207 controls in the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON) GWAS. Gene-level signals were assessed using Multi-marker Analysis of GenoMic Annotation (MAGMA) and SNP summary statistics from BEACON and an expanded GWAS meta-analysis (6167 BE cases, 4112 EAC cases, 17 159 controls). Global variation in the IGF pathway was associated with risk of BE (P = 0.0015). Gene-level associations with BE were observed for GHR (growth hormone receptor; P = 0.00046, false discovery rate q = 0.0056) and IGF1R (IGF1 receptor; P = 0.0090, q = 0.0542). These gene-level signals remained significant at q < 0.1 when assessed using data from the largest available BE/EAC GWAS meta-analysis. No significant associations were observed for EAC. This study represents the most comprehensive evaluation to date of inherited genetic variation in the IGF pathway and BE/EAC risk, providing novel evidence that variation in two genes encoding cell-surface receptors, GHR and IGF1R, may influence risk of BE
Germline variation in the insulin-like growth factor pathway and risk of Barrett's esophagus and esophageal adenocarcinoma
Genome-wide association studies (GWAS) of esophageal adenocarcinoma (EAC) and its precursor, Barrett’s esophagus (BE), have uncovered significant genetic components of risk, but most heritability remains unexplained. Targeted assessment of genetic variation in biologically relevant pathways using novel analytical approaches may identify missed susceptibility signals. Central obesity, a key BE/EAC risk factor, is linked to systemic inflammation, altered hormonal signaling and insulin-like growth factor (IGF) axis dysfunction. Here, we assessed IGF-related genetic variation and risk of BE and EAC. Principal component analysis was employed to evaluate pathway-level and gene-level associations with BE/EAC, using genotypes for 270 single-nucleotide polymorphisms (SNPs) in or near 12 IGF-related genes, ascertained from 3295 BE cases, 2515 EAC cases and 3207 controls in the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON) GWAS. Gene-level signals were assessed using Multi-marker Analysis of GenoMic Annotation (MAGMA) and SNP summary statistics from BEACON and an expanded GWAS meta-analysis (6167 BE cases, 4112 EAC cases, 17 159 controls). Global variation in the IGF pathway was associated with risk of BE (P = 0.0015). Gene-level associations with BE were observed for GHR (growth hormone receptor; P = 0.00046, false discovery rate q = 0.0056) and IGF1R (IGF1 receptor; P = 0.0090, q = 0.0542). These gene-level signals remained significant at q < 0.1 when assessed using data from the largest available BE/EAC GWAS meta-analysis. No significant associations were observed for EAC. This study represents the most comprehensive evaluation to date of inherited genetic variation in the IGF pathway and BE/EAC risk, providing novel evidence that variation in two genes encoding cell-surface receptors, GHR and IGF1R, may influence risk of BE
- …
