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Abstract

Esophageal adenocarcinoma (EA) incidence has risen sharply in Western countries over recent 

decades. Local and systemic inflammation, operating downstream of disease-associated exposures, 

is considered an important contributor to EA pathogenesis. Several risk factors have been 

identified for EA and its precursor, Barrett’s esophagus (BE), including symptomatic reflux, 

obesity, and smoking. The role of inherited genetic susceptibility remains an area of active 

investigation. To explore whether germline variation related to inflammatory processes influences 

susceptibility to BE/EA, we used data from a genome-wide association study (GWAS) of 2,515 

EA cases, 3,295 BE cases, and 3,207 controls. Our analysis included 7,863 single nucleotide 

polymorphisms (SNPs) in 449 genes assigned to five pathways: cyclooxygenase (COX), cytokine 

signaling, oxidative stress, human leukocyte antigen, and NFκB. A principal components-based 

analytic framework was employed to evaluate pathway-level and gene-level associations with 

disease risk. We identified a significant signal for the COX pathway in relation to BE risk 

(P=0.0059, FDR q=0.03), and in gene-level analyses found an association with MGST1 
(microsomal glutathione-S-transferase 1; P=0.0005, q=0.005). Assessment of 36 MGST1 SNPs 

identified 14 variants associated with elevated BE risk (q<0.05). Of these, four were subsequently 

confirmed (P<5.5 × 10−5) in a meta-analysis encompassing an independent set of 1,851 BE cases 

and 3,496 controls. Three of these SNPs (rs3852575, rs73112090, rs4149204) were associated 

with similar elevations in EA risk. This study provides the most comprehensive evaluation of 

inflammation-related germline variation in relation to risk of BE/EA, and suggests that variants in 

MGST1 influence disease susceptibility.

Introduction

The incidence of esophageal adenocarcinoma (EA) has risen rapidly over recent decades in 

Western countries [1, 2]. EA typically arises within a metaplastic precursor epithelium 

known as Barrett’s esophagus (BE) [3]. Established risk factors for EA and BE include 

symptomatic gastroesophageal reflux disease (GERD), abdominal adiposity, tobacco 

smoking, European ancestry, and male sex [3, 4, 5, 6]. A prevailing conceptual model has 

linked chronic inflammation and genomic instability to EA pathogenesis [3]. Several 

exposures associated with elevated disease risk, such as GERD, obesity, and smoking, 

increase levels of local and systemic inflammation, while use of non-steroidal anti-

inflammatory drugs (NSAIDs) and statins (which may have anti-inflammatory properties), 

has been associated with reduced risk [7, 8, 9]. It remains poorly understood, however, 

whether and to what extent inherited genetic variation in specific genes and pathways 

implicated in inflammatory signaling may modulate disease susceptibility.

A biologic link between chronic inflammation and cancer risk has long been appreciated 

[10, 11]. Inflammation may act at multiple stages of disease development to disrupt tissue 

homeostasis, induce aberrant proliferative responses, modulate the tumor microenvironment, 

and compromise immune surveillance [12, 13, 14]. Inflammatory physiological changes 

such as oxidative stress are known to exert downstream genotoxic effects [15], and when 

sustained over extended periods, can promote the emergence of cancer-initiating mutations. 

In the esophagus, long-term exposure to gastric acid or bile salts results in the release of pro-

inflammatory cytokines (e.g., interleukin-8), activation of nuclear factor kappa-light-chain-
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enhancer of activated B cells (NF-kB) and cyclooxygenase-2 (COX2), alterations in gene 

expression, and direct tissue damage to the squamous epithelium [16, 17, 18]. Cigarette 

smoking can also expose the esophagus to deleterious toxins while simultaneously inducing 

systemic inflammatory responses based on activation of cytokine signaling, NFκB 

activation, and COX pathway stimulation [19, 20, 21]. Abdominal adiposity and obesity 

have been associated with elevated circulating levels of pro-inflammatory mediators such as 

tumor necrosis factor-α (TNFα), C-reactive protein (CRP), interleukin-6 (IL-6), and leptin 

[22, 23]. These elevated inflammation markers are likely consequences of adipose tissue 

inflammation. Inflammation may therefore sustain pathogenesis at several points and 

through multiple pathways, from development of early lesions through cancer progression.

Recent large-scale GWAS have provided comprehensive assessments of inherited genetic 

susceptibility to BE and EA [24, 25, 26, 27, 28]. Novel associations have been identified 

with variants in or near several transcription factors implicated in embryonic esophageal 

development, a transcriptional co-activator, and the human leukocyte antigen (HLA) region. 

It remains likely, however, that additional loci that did not satisfy the commonly-used, 

stringent statistical threshold (p<5×10−8) may be involved in modifying disease risk. In this 

regard, pathway-based analytic methods can offer significant advantages over conventional 

genome-wide analyses. Pathway approaches simultaneously reduce the number of statistical 

comparisons and increase power by aggregating large numbers of low-magnitude signals 

[29]; importantly, such methods allow for the systematic analysis of coherent biological 

processes most likely to be implicated in disease etiology.

Given the central role of inflammation in BE and EA pathogenesis, we examined genetic 

variation in five inflammation-related pathways—COX, cytokine signaling, oxidative stress, 

HLA, and NFκB—based on a novel principal components-based pathway analysis 

framework. Using genotyping data from the International Barrett’s Esophagus and 

Adenocarcinoma Consortium (BEACON) GWAS of 2,515 EA cases, 3,295 BE cases, and 

3,207 controls, we selected 7,863 SNPs in 449 genes and assessed associations with risks of 

BE and EA in a pre-specified tiered fashion, first at the pathway level, next at the gene level, 

and ultimately at the SNP level.

Methods

Study population and SNP genotyping

The BEACON GWAS included men and women diagnosed with EA or BE, and control 

participants pooled from 14 individual studies conducted in Western Europe, Australia, and 

North America over the past 20 years. Detailed study population characteristics and 

genotyping protocols have been published [24]. The current analysis employed a pooled 

dataset [30] that included participants of European ancestry from the BEACON GWAS, 

additional BE and EA patients from the UK Barrett’s Esophagus Gene Study and the UK 

Stomach and Oesophageal Cancer Study (SOCS), respectively [24], and additional control 

participants from a hospital-based case-control study of melanoma conducted at the MD 

Anderson Cancer Center (Houston, TX) [31]. Genotyping of buffy coat or whole blood 

DNA from all participants was conducted using the Illumina Omni1M Quad platform, in 

accordance with standard quality control procedures [32]. All participants gave written 
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informed consent, and this project was approved by the ethics review board of the Fred 

Hutchinson Cancer Research Center. We selected all unrelated participants with <2% 

missing genotyping calls; thus the final study sample included 2,515 EA cases, 3,295 BE 

cases, and 3,207 controls. Three control participants were excluded from analyses involving 

BE cases, because of familial relation to cases.

Selection of genes in inflammation-related pathways

Five pathways implicated in chronic inflammation were selected for analysis: 1) 

cyclooxygenase (COX) (n=40 genes), 2) pro- and anti-inflammatory cytokines (n=198 

genes), 3) oxidative stress (n=117 genes), 4) HLA (32 genes), and 5) NF-kB (n=125 genes). 

Selected genes in each of these pathways (Table S1) were identified based on an extensive 

survey of the prior literature on inflammation in cancer and EA pathogenesis [12, 33, 34, 35, 

36, 37], and as described in public databases (eg. KEGG, Biocarta).

SNP selection

SNPs selected for this study are located in or near (+/− 2.0 kilobases) the genes chosen for 

analysis. We excluded from consideration SNPs that failed Illumina quality measures or 

standard quality control procedures [32]. Specifically, SNPs were excluded if any of the 

following criteria were satisfied: i) Illumina GenTrain score < 0.6 or cluster separation < 0.4; 

ii) >5% missing call rate over included samples; iii) discordant genotype calls in any pair of 

duplicate study samples; iv) Mendelian error in either one of the HapMap QC trios or the 

small number of families identified in the BEACON data; v) significant departure from 

Hardy-Weinberg Equilibrium (P<10−4); and vi) minor allele frequency (MAF) <1%. 

Imputation of missing values for genotyped SNPs was conducted using SHAPEIT [38]. 

After imposing the above filters, we identified all available Omni1M SNPs located within 

the selected genes of each inflammation-related pathway. Segments of 2.0 kilobases of 

flanking sequence proximal to the gene start sites and distal to the 3′UTRs were also 

included, based on gene boundaries defined in hg19/GRChB37. No Omni1M SNPs were 

available for 16 genes initially selected (cytokines: n=14, oxidative stress: n=2) (Table S1). 

Minor and major alleles were reported throughout using the ‘plus’ strand designation.

Statistical analysis

We examined each of the five inflammation-related pathways using an application of 

principal components analysis (PCA). We first constructed a genotype matrix comprising all 

SNPs assigned to the indicated pathway, inclusive of case patients of the selected type (BE 

or EA) and all control participants. Individual SNP variables, coded as 0, 1, or 2 minor 

alleles, were standardized across participants to have a mean of zero and standard deviation 

(SD) of one. The first N principal components (PCs) that captured ≥50% of the genotypic 

variance of the pathway were selected (a minimum of 3 PCs were included: N≥3). 

Association between a given pathway and risk of BE or EA was assessed using the 

likelihood ratio test (LRT). Two logistic regression models were compared: i) a full model 

containing N pathway-level PCs (PC1,p…PCN,p), age, sex, and the first four PCs derived 

from ancestry-informative markers (AIM) to account for population stratification (PC1,AIM-

PC4,AIM) [30]; and ii) a reduced model containing only age, sex and PC1,AIM-PC4,AIM. HLA 

loci were excluded from the set of ancestry-informative markers, as described previously 
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[24]. We selected pathways for which the resulting LRT P value was <0.05, after correction 

for multiple comparisons (n=5) via the false discovery rate method (FDR).

To prioritize genes within a selected pathway for further analysis at the gene level, we 

examined SNP loading factors within the first pathway-level principal component (PC1,p). 

SNPs within PC1,p were rank-ordered by the absolute values of their loading coefficients. 

The first ten genes represented by these rank-ordered SNPs were advanced to gene-level 

analysis. PCA was conducted for each of these genes using a genotype matrix comprised of 

all SNPs assigned to the indicated gene; the first N PCs that captured ≥50% of the genotypic 

variance were selected (a minimum of 3 PCs were included: N≥3). Association between a 

given gene and risk of BE or EA was assessed as above using the LRT, comparing i) a full 

model inclusive of the selected gene-level PCs (PC1,g-PCN,g), age, sex, and PC1,AIM-

PC4,AIM; and ii) a nested reduced model containing age, sex, and PC1,AIM-PC4,AIM. 

Multiple comparisons (n=10) were accounted for via the FDR method.

Genes satisfying FDR q<0.05 were selected for additional analysis at the SNP level. 

Unconditional logistic regression was used to compute odds ratios (ORs) for risk of BE or 

EA associated with a given SNP variant, under an additive model (per-allele) with 

adjustment for age, sex, and PC1,AIM-PC4,AIM, and correcting for multiple comparisons via 

the FDR method. Observed associations were visualized graphically using LocusZoom [39].

Statistical analyses were conducted using STATA/SE version 14 (College Station, TX).

An independent dataset comprised of 1,851 BE patients and 3,496 control participants from 

the UK, described previously [25], was used for validation studies. Genotyping was 

performed on the Illumina Human 660W-Quad and Human 1.2M-Duo array platforms. 

Summary statistics for the associations of 13 genotyped SNPs at the MGST1 locus and risk 

of BE were extracted and used in a subsequent meta-analysis based on the inverse-variance 

weighting method [41]. Validation analyses were conducted in R v3.2.1.

Results

Characteristics of study participants

The distributions of demographic and behavioral characteristics among control participants, 

BE case patients, and EA case patients are shown in Table 1. EA cases were somewhat older 

and more often male compared to controls and BE cases. The percentage reporting ever 

having smoked cigarettes was higher among BE and EA cases than among controls, and 

heavy smoking (45+ pack years) was more prevalent among EA cases. Obesity (BMI 30+) 

and weekly reflux/heartburn were more prevalent among BE and EA cases than among 

controls. NSAID use appeared similarly common across the three groups. Relative to 

controls, a substantially higher percentage of participants with BE and EA were classified as 

having a high composite “inflammation score”, based on BMI, smoking history, and reflux 

symptoms.
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Pathway-level associations with risk of BE or EA

To obtain a top-level, global assessment of the association between germline variation within 

five selected inflammation-related pathways (COX, cytokine signaling, oxidative stress, 

HLA, and NFκB) and risk of BE or EA, we employed a PCA-based approach. Based on 

logistic regression analyses that incorporated a subset of the derived principal components as 

predictor variables and assessed associations with disease risk, we identified a single 

significant (P<0.05) pathway-level signal for risk of BE: the COX pathway (P=0.006) (Table 

2). This association remained significant after accounting for multiple comparisons (FDR 

q=0.03). None of the five pathways examined were found to be associated (P<0.05) with risk 

of EA.

Gene-level associations with risk of BE

The observed association between variation in the COX pathway and risk of BE could 

reflect the summation of a large number of small, distributed signals across many genes, or 

represent relatively concentrated signals in a single or small number of genes. To evaluate 

these possibilities and determine whether or not individual COX pathway-related genes in 

particular might account for the identified association, we undertook gene-level analyses 

using the same PCA framework used at the pathway level. Of the 40 genes assigned to the 

COX pathway, we prioritized 10 for further analysis, based on their contribution to the 

overall pathway-level genotypic variance, as reflected in rank-ordered SNP loading 

coefficients in the first principal component. Among these 10 genes assessed for associations 

with risk of BE (Table 3), only a single gene exhibited a significant signal: microsomal 

glutathione S-transferase 1 (MGST1) (P=0.0005). This association remained significant after 

correction for multiple comparisons (FDR q=0.005). A non-significant (P=0.07) association 

was observed for gene-level variation in MGST1 and risk of EA (Table S2).

SNP-level associations with risk of BE

Individual SNPs located within or in proximity to (± 2.0 kb) the MGST1 locus were 

assessed for associations with risk of BE. Among 36 such variants examined, 23 exhibited a 

nominally significant (P<0.05) signal. 14 of these 23 remained significant after correction 

for (n=36) multiple comparisons (FDR q<0.05) (Table 4). The minor alleles at all 14 SNPs 

were associated with elevated risk of BE, with ORs ranging in magnitude from 1.10–1.38. 

The most significant association was for rs4149203 C>T (OR=1.16, P=9.0 × 10−5, q=0.001). 

A LocusZoom plot of the 36 assessed SNPs revealed a cluster of six nearby variants in high 

linkage disequilibrium (LD, r2>0.8) with rs4149203 (Figure 1). A second cluster of six 

SNPs satisfying FDR q<0.05 was situated at the 5′ end of the MGST1 locus (Figure S2); 

modest to moderate LD was observed between rs2239676, the top-ranked SNP in this 

region, and the other five variants in close proximity. Based on data from the NIH Roadmap 

Epigenome Project [42], three of these 5′ polymorphisms – rs2239676, rs2239677, and 

rs2975138 – lie within a 1.2-kilobase segment that spans the MGST1 transcriptional start 

site and is characterized by active chromatin marks in esophageal tissue (Figure S3). Among 

the 14 significant susceptibility signals identified for BE, 11 were also associated with 

increased risk of EA (P<0.05). Eight of these 11 remained significant after adjustment for 

multiple comparisons (q<0.05), with observed ORs ranging from 1.10 to 1.17 (Table S3).
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Assessment of top MGST1 SNPs and risk of BE in an independent study sample

We next evaluated whether any of the 14 MGST1 variants associated with risk of BE in our 

primary analysis were similarly associated with altered BE risk in a large, independent 

sample set from the UK comprised of 1,851 BE patients and 3,496 control participants. 13 

of the 14 SNPs were available for analysis, and of these, four variants exhibited borderline-

significant (P<0.10) associations with BE: rs3852575, rs4149204, rs7312090, rs4149203 

(Table 5). ORs for these SNPs were similar to those obtained in the primary analysis, though 

slightly reduced in magnitude (1.08 versus 1.16). In a subsequent meta-analysis, the P values 

for all four of these variants were highly significant (P<5.5 × 10−5), with an additional six 

SNPs satisfying P<0.05.

Expression quantitative trait locus (eQTL) analysis

To explore whether or not any of the 14 individual MGST1 SNPs in Table 4 may also be 

correlated with altered MGST1 RNA expression levels in the esophagus, we conducted in 
silico eQTL analyses using the Genotype-Tissue Expression (GTEx) database [43]. Of the 

13 SNPs with available genotyping and expression data in esophageal mucosa, two variants 

were associated (P<0.05) with differential MGST1 expression: rs4149186 A>C (P=7.9 × 

10−5) and rs2975138 G>A (P=1.20 × 10−7) (Table S4). A third variant, rs4149203 C>T, 

reached borderline significance (P=0.074). For each of these SNPs, the allele found to be 

associated with increased risk of BE was also correlated with reduced expression of MGST1 
(Figure S1).

Discussion

Chronic inflammation may occur as a result of multiple exposures established as risk factors 

for BE and EA (gastroesophageal reflux, obesity, smoking) and is thought to represent a 

common pathway underlying the emergence and progression of these conditions [3, 44]. 

This study represents the first systematic examination of the relationship between germline 

genetic variation in inflammation-related pathways—COX, cytokine signaling, oxidative 

stress, HLA, and NFκB—and risks of BE and EA, using a principal components-based 

analytic framework. Drawing on genetic data from a large consortium-based GWAS [24], we 

found a significant association between variation in the COX pathway and risk of BE, and 

identified a gene-level signal for MGST1. SNP-level analyses identified 14 individual 

MGST1 variants associated with elevated disease risk, including several intronic variants 

that were subsequently confirmed (P<5.5 × 10−5) in a meta-analysis encompassing a large 

independent sample set of additional BE cases and controls.

MGST1 is one of three microsomal glutathione S-transferase (GST) enzymes in humans, 

and belongs to a larger GST gene family encoding a number of proteins responsible for 

neutralizing oxidative stress through conjugation of endogenous and xenobiotic lipophilic 

electrophiles with glutathione [45, 46, 47]. MGST1 shares ~40% sequence homology at the 

amino acid level with prostaglandin E synthase (PTGES, formerly MGST1L1), a key 

enzyme that acts downstream of cyclooxygenases to catalyze the production of PGE2 from 

PGH2 [48]. MGST1–3 and PTGES belong to the “MAPEG” super-family of membrane-

associated proteins in eicosanoid and glutathione metabolism. Microsomal GST1 is 
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localized to the endoplasmic reticulum and outer mitochondrial membrane, and plays an 

important role in suppressing lipid peroxidation and protecting mitochondrial integrity [46]. 

Multiple alternatively spliced transcripts arise from the MGST1 gene locus, and the MGST1 
promoter region has been shown to be transcriptionally responsive to oxidative stress [45]. 

Some evidence exists for an association between genetic variation in the MGST1 gene and 

altered risk of colorectal cancer in Han Chinese [49].

The 14 MGST1 SNPs found to be associated with risk of BE in our primary analysis were 

geographically clustered into two main groups, one at the 3′ end of the gene, and the other 

at the 5′ end, and may reflect two (or more) independent signals. The most significant 

association was for rs4149203 C>T, a 3′ intronic variant in strong LD with the six other 

associated 3′ SNPs (r2>0.8). Four of these seven SNPs, including rs4149203, were 

confirmed in the meta-analysis phase of our validation studies. These variants lie in a region 

defined by enhancer histone marks, and modify predicted sequence motifs for several 

transcription factors (eg. POU5F1, SOX, BRCA1, FOXP1; Table S5) [50]. Of interest, 

FOXP1 was identified as a susceptibility locus for EA in our previous report [24], and 

recently replicated in an independent study [28]. Published eQTL data from a study of gene 

expression in various brain regions indicated that rs4149203 (and correlated SNPs) may be 

associated with altered MGST1 expression in cerebellum [50, 51]. Proximity of several of 

these variants to an MGST1 splice junction also suggests a potential influence on 

(alternative) splicing regulation.

At the 5′ end of MGST1, rs2239676 C>G was the top signal identified among a cluster of 

six variants associated with BE risk. Three of these variants lie in close proximity to the 

MGST1 transcriptional start site, within a region characterized as active chromatin in 

esophageal tissue; recruitment of Pol II and several transcription factors (eg, Hey1, MYC/

MAX) has been reported [42]. Our in silico eQTL analyses based on data from the GTEx 

project indicated that rs2975138 G>A and rs4149186 A>C, in particular, correlate with 

reduced MGST1 expression in esophageal mucosa. The rs2975138 variant modifies 

predicted motifs for estrogen receptor-alpha, Pax5, and Zfx, while rs4149186 alters 

recognition sequences for FoxA, FoxJ2, and Nkx2, among other regulators [50]. Given that 

these variants failed to validate in the Oxford (UK) dataset, however, their association with 

BE risk remains questionable. As a further qualification, we note that GTEx eQTL analyses 

appear to have been conducted using normal esophageal squamous epithelium, which based 

on emerging findings, may not in fact be the tissue of origin for Barrett’s epithelium [52].

The findings described above suggest that several of the identified variants may play a role 

in influencing MGST1 RNA expression levels. Additional studies, however, are warranted to 

investigate potential associations between selected variants and altered tissue-specific 

MGST1 expression, and to explore a possible causal basis for the observed findings. Since 

BE and EA often arise within an epithelium chronically exposed to refluxate and to 

cigarette-associated toxins (ie. associated with inflammation), it would be of interest to 

determine experimentally whether MGST1 plays a protective role in counteracting such 

insults and maintaining tissue homeostasis.
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Given that BE is the only known precursor of EA, one expectation is that risk factors linked 

to altered risk of BE would be associated with similar alterations in risk of EA. In this study, 

variation in the COX pathway as a whole met the threshold for significance in relation to 

risk of BE, but not EA. Our subsequent analyses, however, revealed that a number of the 

individual MGST1 SNPs found to be associated with risk of BE did in fact exhibit similar 

associations with risk of EA (Table S3). With respect to top SNP-level signals, the 

associated ORs for EA were in the same direction as, and of comparable magnitude to, those 

observed for BE. This strong level of concordance suggests that the identified variants, if 

causal, may influence disease risk primarily at the level of BE, rather than progression from 

BE to EA.

Genes in our analysis assigned to the COX pathway included those coding for the two COX 

enzymes, prostaglandin and thromboxane synthases and receptors, aldo-keto reductases, 

peroxisome proliferator-activated receptors (PPAR), matrix metallopeptidases, microsomal 

glutathione S-transferases, and a small assortment of growth factors (VEGF) and 

interleukins or interleukin receptors. Previous candidate gene-based studies have reported 

associations between germline variation in PTGS2 (COX-2) and altered risk of EA [53, 54], 

while independent epidemiologic evidence has supported an inverse association between use 

of NSAIDs (inhibitors of COX-1 and COX-2 activity) and risk of EA [7, 8]. Our gene-level 

and SNP-level analyses did not include all genes assigned to the COX pathway (e.g. 

PTGS2), as only a limited subset were advanced for further study based on pre-specified 

selection criteria (the top 10 genes in PC1, see Table 3). It remains a possibility, therefore, 

that associations of disease risk with variation in other COX pathway genes may be evident 

in our dataset, and contribute in part to the observed pathway-level signal.

One of the main strengths of our study was the use of a PCA framework to assess pathway-

level and gene-level associations between germline genetic variation and risk of BE or EA. 

PCA is an effective strategy to reduce data dimensionality. In this report, we adapted PCA to 

genetic pathway or gene analysis, and implemented a hierarchical strategy to identify 

genetic variants associated with traits. Application of PCA to GWAS data offered key 

advantages over conventional marginal analyses that are based exclusively on evaluation of 

individual SNPs. First, by aggregating signals across multiple genes (of a given pathway) or 

across multiple SNPs (of a given gene), the PCA method increased our ability to detect 

associations characterized by multiple, independent, distributed low-magnitude signals. 

Second, by reducing the dimensionality of the genotype matrix, PCA appreciably reduced 

the number of multiple comparisons and effectively increased our statistical power. Our 

tiered analysis plan further specified that only (a subset of) genes within significant 

pathways were assessed at the gene level, and only variants within significant genes were 

evaluated at the SNP level.

Another important strength was the use of pooled data from the BEACON GWAS, which 

provided the largest sample size to date in the evaluation of inflammation-related germline 

variation and risks of BE and EA. As a consequence of analyzing both BE and EA, we had 

the opportunity to compare genetic variation associated with risk of a neoplastic precursor 

lesion and the cancer that arises from it. Our assessment of 7,863 SNPs in 449 genes 

Buas et al. Page 10

Gut. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assigned to five pathways significantly expands past candidate gene-based efforts to examine 

genetic variation in inflammation-related loci in relation to risk of BE and EA.

This study also had certain limitations. First, while our tiered analysis scheme enabled us to 

restrict the number of comparisons and boost statistical power, it also narrowed the scope of 

our analysis and potentially resulted in missed association signals. Variation in four of the 

five included pathways was not examined at the gene or SNP level, while only 25% of the 

genes in the COX pathway were advanced beyond pathway-level assessment. Second, given 

the hierarchical nature of our statistical analysis, whereby we first assessed significance at 

the pathway level, and then proceeded to the gene level only for ‘significant’ pathways, the 

initial P values obtained for individual genes, and subsequently for individual SNPs, should 

be interpreted as the P values conditional on that pathway (or gene) already being selected, 

i.e., P(A|B), where B represents the event that a pathway (or gene) is selected, and A 

represents the event that a gene (or SNP) is significant. This conditional probability 

framework was well suited to our use of PCA as a discovery-phase approach for identifying 

potential novel association signals, which were then subsequently confirmed in an 

independent sample set. Third, while our study provided broad coverage of several major 

biological pathways of probable relevance to BE/EA, it is almost certain that a number of 

important genes or genomic loci were not included. Cytokine signaling, NFκB activity, and 

oxidative stress, for example, represent complex processes likely influenced by many 

hundreds or more gene products and a large number of intergenic loci harboring both 

enhancer/insulator transcriptional elements and non-coding RNAs. The present analysis, 

however, was largely restricted to examining common germline variants located within or in 

close (2.0-kb) proximity to defined protein-coding genes.

In conclusion, our study represents the most comprehensive evaluation to date of 

inflammation-related inherited genetic variation in relation to risk of BE and EA. Using a 

PCA framework for pathway-level and gene-level analyses, we describe evidence for novel 

associations between variation at the MGST1 locus and increased risk of BE. It appears 

possible that certain associated variants may act to influence expression levels of MGST1, a 

gene with known roles in the cellular response to oxidative stress. Pending further validation 

in additional study populations, future studies are warranted to fine-map the identified 

association signals, assess experimentally the functional effects of these variants, and 

explore the biological role of MGST1 in BE/EA pathogenesis.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regional association plot for n=36 genotyped SNPs at the MGST1 gene locus
The top-ranked SNP associated with risk of BE is shown in solid purple. SNPs are ordered 

by genomic location. The color scheme indicates LD between the top-ranked SNP and other 

SNPs in the region using r2 values calculated from the 1000 Genomes Project. The y axis 

shows −log10 (P) values computed from 3295 BE cases and 3204 controls. The 

recombination rate from CEU (Utah residents of Northern and Western European ancestry) 

HapMap data (right y axis) is shown in light blue.
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