63,316 research outputs found

    Type IIB Holographic Superfluid Flows

    Get PDF
    We construct fully backreacted holographic superfluid flow solutions in a five-dimensional theory that arises as a consistent truncation of low energy type IIB string theory. We construct a black hole with scalar and vector hair in this theory, and study the phase diagram. As expected, the superfluid phase ceases to exist for high enough superfluid velocity, but we show that the phase transition between normal and superfluid phases is always second order. We also analyze the zero temperature limit of these solutions. Interestingly, we find evidence that the emergent IR conformal symmetry of the zero-temperature domain wall is broken at high enough velocity.Comment: v3: Published version. Figures 5 and 6 corrected. 24 pages, 7 figure

    Metacarpophalangeal pattern profile analysis of a sample drawn from a North Wales population

    Get PDF
    This is tha author's PDF version of an article published in Annals of human biology© 2001. The definitive version is available at http://www.tandf.co.uk/journalsSexual dimorphism and population differences were investigated using metacarpophalangeal pattern profile (MCPP) analysis. Although it is an anthropmetric technique, MCPP analysis is more frequently used in genetic syndrome analysis and has been under-used in the study of human groups. The present analysis used a series of hand radiographics from Gwynedd, North Wales, to make comparisons, first, between the sexes within the sample and then with previously reported data from Japan. The Welsh sexes showed MCPP analyses that indicated size and shape differences but certain similarities in shape were also evident. Differences with the Japanese data were more marked. MCPP anlysis is a potentially useful anthropmetric technique but requires further statistical development

    PerfWeb: How to Violate Web Privacy with Hardware Performance Events

    Full text link
    The browser history reveals highly sensitive information about users, such as financial status, health conditions, or political views. Private browsing modes and anonymity networks are consequently important tools to preserve the privacy not only of regular users but in particular of whistleblowers and dissidents. Yet, in this work we show how a malicious application can infer opened websites from Google Chrome in Incognito mode and from Tor Browser by exploiting hardware performance events (HPEs). In particular, we analyze the browsers' microarchitectural footprint with the help of advanced Machine Learning techniques: k-th Nearest Neighbors, Decision Trees, Support Vector Machines, and in contrast to previous literature also Convolutional Neural Networks. We profile 40 different websites, 30 of the top Alexa sites and 10 whistleblowing portals, on two machines featuring an Intel and an ARM processor. By monitoring retired instructions, cache accesses, and bus cycles for at most 5 seconds, we manage to classify the selected websites with a success rate of up to 86.3%. The results show that hardware performance events can clearly undermine the privacy of web users. We therefore propose mitigation strategies that impede our attacks and still allow legitimate use of HPEs

    Construct, Merge, Solve and Adapt: Application to the repetition-free longest common subsequence problem

    Get PDF
    In this paper we present the application of a recently proposed, general, algorithm for combinatorial optimization to the repetition-free longest common subsequence problem. The applied algorithm, which is labelled Construct, Merge, Solve & Adapt, generates sub-instances based on merging the solution components found in randomly constructed solutions. These sub-instances are subsequently solved by means of an exact solver. Moreover, the considered sub-instances are dynamically changing due to adding new solution components at each iteration, and removing existing solution components on the basis of indicators about their usefulness. The results of applying this algorithm to the repetition-free longest common subsequence problem show that the algorithm generally outperforms competing approaches from the literature. Moreover, they show that the algorithm is competitive with CPLEX for small and medium size problem instances, whereas it outperforms CPLEX for larger problem instances.Peer ReviewedPostprint (author's final draft

    Emergent Quantum Near-Criticality from Baryonic Black Branes

    Full text link
    We find new black 3-brane solutions describing the "conifold gauge theory" at nonzero temperature and baryonic chemical potential. Of particular interest is the low-temperature limit where we find a new kind of weakly curved near-horizon geometry; it is a warped product AdS_2 x R^3 x T^{1,1} with warp factors that are powers of the logarithm of the AdS radius. Thus, our solution encodes a new type of emergent quantum near-criticality. We carry out some stability checks for our solutions. We also set up a consistent ansatz for baryonic black 2-branes of M-theory that are asymptotic to AdS_4 x Q^{1,1,1}.Comment: 29 pages, 4 figures; v2 discussion of entropy revised, minor changes; v3 note added, minor improvements, version published in JHE

    Fermion correlators in non-abelian holographic superconductors

    Full text link
    We consider fermion correlators in non-abelian holographic superconductors. The spectral function of the fermions exhibits several interesting features such as support in displaced Dirac cones and an asymmetric distribution of normal modes. These features are compared to similar ones observed in angle resolved photoemission experiments on high T_c superconductors. Along the way we elucidate some properties of p-wave superconductors in AdS_4 and discuss the construction of SO(4) superconductors.Comment: 49 pages, 11 figure

    Angiogenesis in the Normal Adrenal Fetal Cortex and Adrenocortical Tumors

    Get PDF
    Simple Summary Pharmacological angiogenesis modulation was robustly demonstrated to be a powerful clinical resource in oncotherapy. Adrenocortical carcinomas (ACC) often have a poor prognosis for which therapeutic options are limited. Understanding the mechanisms that regulate adrenocortical angiogenesis both under physiological conditions and in ACC could provide important clues on how these processes could be modulated for clinical purposes. This report summarizes the current knowledge on adrenal cortex angiogenesis regulation in physiological conditions and ACC. Embryonic adrenal angiogenesis is regulated by VEGF and Ang-Tie signaling pathways. VEGF angiogenic pathway was initially considered a promising therapeutic target for improving ACC prognosis. However, every single VEGF pathway-targeting clinical trial in ACC so far conducted yielded disappointing results. In contrast, the potential of Ang-Tie pathway-targeting in ACC is yet to be explored. Therefore, further investigation on the role and efficacy of modulating both Ang-Tie and VEGF pathways in ACC is still an unmet need. Angiogenesis plays an important role in several physiological and pathological processes. Pharmacological angiogenesis modulation has been robustly demonstrated to achieve clinical benefits in several cancers. Adrenocortical carcinomas (ACC) are rare tumors that often have a poor prognosis. In addition, therapeutic options for ACC are limited. Understanding the mechanisms that regulate adrenocortical angiogenesis along the embryonic development and in ACC could provide important clues on how these processes could be pharmacologically modulated for ACC treatment. In this report, we performed an integrative review on adrenal cortex angiogenesis regulation in physiological conditions and ACC. During embryonic development, adrenal angiogenesis is regulated by both VEGF and Ang-Tie signaling pathways. In ACC, early research efforts were focused on VEGF signaling and this pathway was identified as a good prognostic factor and thus a promising therapeutic target. However, every clinical trial so far conducted in ACC using VEGF pathway- targeting drugs, alone or in combination, yielded disappointing results. In contrast, although the Ang-Tie pathway has been pointed out as an important regulator of fetal adrenocortical angiogenesis, its role is yet to be explored in ACC. In the future, further research on the role and efficacy of modulating both Ang-Tie and VEGF pathways in ACC is needed

    Sum Rules from an Extra Dimension

    Full text link
    Using the gravity side of the AdS/CFT correspondence, we investigate the analytic properties of thermal retarded Green's functions for scalars, conserved currents, the stress tensor, and massless fermions. We provide some results concerning their large and small frequency behavior and their pole structure. From these results, it is straightforward to prove the validity of various sum rules on the field theory side of the duality. We introduce a novel contraction mapping we use to study the large frequency behavior of the Green's functions.Comment: v2: 23 pages (plus appendix), revised presentation, discussion of branch cuts moved to appendix, and some minor changes; v1: 24 pages (plus appendix

    Multivariate Anisotropic Interpolation on the Torus

    Full text link
    We investigate the error of periodic interpolation, when sampling a function on an arbitrary pattern on the torus. We generalize the periodic Strang-Fix conditions to an anisotropic setting and provide an upper bound for the error of interpolation. These conditions and the investigation of the error especially take different levels of smoothness along certain directions into account
    corecore