28,612 research outputs found
Flight from the Fight? Civil War and its Effects on Refugees
Civil war dominates conflict in the modern era. An effect of this is a large number of refugees, who flee from war-torn countries in favor of lands where they can live in safety. This paper examines the extent to which the number of these refugees is affected by the number of civil wars a country has had in a year. Previous literature suggests that civil wars increase destruction in a state and threaten people’s lives, which encourages migration out of a warring country. Based on this, this paper hypothesizes that increasing the number of civil wars in a country will likewise increase the number of refugees leaving that country. However, this explanation is not supported by this paper’s OLS model, with respect for human rights and type of government being shown as more important factors than the number of civil conflicts. A possible reason for this finding is the destruction of critical transportation infrastructure resulting from civil war. The results of this study warrant further investigation into what exactly motivates refugee behavior, especially during civil wars
Flight service evaluation of composite helicopter components
An assessment of composite helicopter structures, exposed to environmental effects, after four years of commercial service is presented. This assessment is supported by test results of helicopter components and test panels which have been exposed to environmental effects since late 1979. Full scale static and fatigue tests are being conducted on composite components obtained from S-76 helicopters in commercial operations in the Gulf Coast region of Louisiana. Small scale tests are being conducted on coupons obtained from panels being exposed to outdoor conditions in Stratford, Connecticut and West Palm Beach, Florida. The panel layups represent S-76 components. Moisture evaluations and strength tests are being conducted, on the S-76 components and panels, over a period of eight years. Results are discussed for components and panels with up to four years of exposure
Pretreatment prognostic value of dynamic contrast-enhanced magnetic resonance imaging vascular, texture, shape, and size parameters compared with traditional survival indicators obtained from locally advanced breast cancer patients
Objectives: The aim of this study was to determine if associations exist between pretreatment dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)-based metrics (vascular kinetics, texture, shape, size) and survival intervals. Furthermore, the aim of this study was to compare the prognostic value of DCE-MRI parameters against traditional pretreatment survival indicators. Materials and Methods: A retrospective study was undertaken. Approval had previously been granted for the retrospective use of such data, and the need for informed consent was waived. Prognostic value of pretreatment DCE-MRI parameters and clinical data was assessed via Cox proportional hazards models. The variables retained by the final overall survival Cox proportional hazards model were utilized to stratify risk of death within 5 years. Results: One hundred twelve subjects were entered into the analysis. Regarding disease-free survival-negative estrogen receptor status, T3 or higher clinical tumor stage, large ( > 9.8 cm 3 ) MR tumor volume, higher 95th percentile ( > 79%) percentage enhancement, and reduced ( > 0.22) circularity represented the retained model variables. Similar results were noted for the overall survival with negative estrogen receptor status, T3 or higher clinical tumor stage, and large ( > 9.8 cm 3 ) MR tumor volume, again all been retained by the model in addition to higher ( > 0.71) 25th percentile area under the enhancement curve. Accuracy of risk stratification based on either traditional (59%) or DCEMRI (65%) survival indicators performed to a similar level. However, combined traditional and MR risk stratification resulted in the highest accuracy (86%). Conclusions: Multivariate survival analysis has revealed thatmodel-retained DCEMRI variables provide independent prognostic information complementing traditional survival indicators and as such could help to appropriately stratify treatment
Traces, high powers and one level density for families of curves over finite fields
AbstractThe zeta function of a curve C over a finite field may be expressed in terms of the characteristic polynomial of a unitary matrix ΘC. We develop and present a new technique to compute the expected value of tr(ΘCn) for various moduli spaces of curves of genus g over a fixed finite field in the limit as g is large, generalising and extending the work of Rudnick [Rud10] and Chinis [Chi16]. This is achieved by using function field zeta functions, explicit formulae, and the densities of prime polynomials with prescribed ramification types at certain places as given in [BDF+16] and [Zha]. We extend [BDF+16] by describing explicit dependence on the place and give an explicit proof of the Lindelöf bound for function field Dirichlet L-functions L(1/2 + it, χ). As applications, we compute the one-level density for hyperelliptic curves, cyclic ℓ-covers, and cubic non-Galois covers.</jats:p
Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure
Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames
Flight service evaluation of composite helicopter components
This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents
Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 2: Ground Operations evaluation
The Ground Operations Evaluation describes the breath and depth of the various study elements selected as a result of an operational analysis conducted during the early part of the study. Analysis techniques used for the evaluation are described in detail. Elements selected for further evaluation are identified; the results of the analysis documented; and a follow-on course of action recommended. The background and rationale for developing recommendations for the current Shuttle or for future programs is presented
Development of a 1000V, 200A, low-loss, fast-switching, gate-assisted turn-off thyristor
The results of a program to develop a fast high power thyristor that can operate in switching circuits at frequencies of 10 to 20 kHz with very low power loss are given. Feasibility was demonstrated for a thyristor that blocks 1000V forward and reverse, conducts 200A, turns on in little more than 2 more microseconds with only 2A of gate drive, turns off in 3 microseconds with 2A of gate assist current and has an energy dissipation of only 12 mJ per pulse for a 20 microsecond half sine wave 200A pulse. Data were generated that clearly showed the tradeoffs that can be made between the turn off time and forward drop. The understanding of this relationship is necessary in the selection of deliverable thyristors with turn off times up to 7 microseconds to give improved efficiency in a series resonant dc to dc inverter application
Integrated optical directional coupler biosensor
We present measurements on biomolecular binding reactions, using a new type of integrated optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+-Na+ ion-exchange in glass and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered
Shuttle Ground Operations Efficiencies/Technologies Study (SGOE/T). Volume 5: Technical Information Sheets (TIS)
The Technology Information Sheet was assembled in database format during Phase I. This document was designed to provide a repository for information pertaining to 144 Operations and Maintenance Instructions (OMI) controlled operations in the Orbiter Processing Facility (OPF), Vehicle Assembly Building (VAB), and PAD. It provides a way to accumulate information about required crew sizes, operations task time duration (serial and/or parallel), special Ground Support Equipment (GSE). required, and identification of a potential application of existing technology or the need for the development of a new technolgoy item
- …
