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r e d i s t r i b u t e  st resses by general y i e l d i n g ,  such as i n  metal s t ruc tures .  A 
d e t a i l e d  f i n i t e  element ana lys is  was conducted and used i n  t h e  design o f  
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Stratford, Connecticut 

This report discusses aspects of curved beam effects and their 
importance in designing composite frame structures, The curved 
beam effect induces radial flange loadings which in turn causes 
flange curling. This curling increases the axial flange stresses 
and induces transverse bending. These effects are more important 
in composite structures due to their general inability to redis- 
tribute stresses by general yielding, such as in metal structures, 
A detailed finite element analysis was conducted and used in the 
design of composite curved frame specimens, Five specimens were 
statically tested and comparisons made of predicted and test 
strains. The study showed the curved frame effects must be 
accurately accounted for to avoid premature fracture; finite 
element methods can accurately predict most of the stresses and no 
elastic relief from curved beam effects occurred in the composite 
frames tested, Finite element studies are presented for compara- 
tive curved beam effects on composite and metal frames, 



This application of advanced composite materials has been extended 
to helicopter airframe structures. These structures are generally 
of light gage construction which amplifies the importance of 
stability and stiffness effects in their design. A specific type 
affected are beams or frames, particularly the curved portion, 
where the stress field is more complex. 

The curved frame study was initiated because of previous problems 
with premature fractures of curved composite airframe type 
structures. Under NASA Contract NAS1-16826 "Design, Fabrication 
and Test of Composite Curved Frames for Helicopter Fuselage 
Structuregf Sikorsky Aircraft investigated specific problems in- 
volved with using advanced composite materials. 

The work included reviewing curved beam effects, analysis and 
design of composite curved frames, fabrication and static test to 
fracture. 

The study started with reviewing available analytical methods and 
effects on curved beams, particularly with thin flanges that would 
be representative of light gage helicopter airframe construction. 
This background was used to initially size curved frame structures 
for a detailed finite element (FE) analysis. Design loads for the 
curved portion of the frame, are those of a typical helicopter 
airframe. In this study seven different designs were investigated 
to assess the weight/cost of each design. The bead stiffened 
design was selected. 

Thereafter the curved frame specimens were fabricated and static 
tested. Strain gage results are compared with FE analysis to 
evaluate curved beam effects and assess stress analysis capabi- 
lities. In this report an assessment is made using finite element 
studies to compare analytical methods and test data. 



2-0 PFU3LIMINi4RY ANALYSIS AND DESIGN 

2.1 Curved Beam Effects 

Most metal aircraft beams and frames are analyzed without con- 
sidering curvature effects, except where induced web crushing is 
important. The effects of curvature in the flanges, which in- 
crease axial stress and induces transverse flange bending, are 
generally considered to be relieved due to material yielding. In 
essence, the curvature effects may be considered as an early yield 
load condition but do not affect the ultimate (static) strength of 
the structure, However, it can be expected that the current 
advanced composite materials, with their low strain capability, 
will not provide such plastic relief and the curved beam effects 
may be retained to fracture, It is important to understand tbe 
effects of curvature and the parameters affecting the stresses for 
composite structures in general. 

The effects of curvature are illustrated in Figure la, For solid 
beams there is a shift of the neutral axis and an increase of the 
axial stress (a ) on the concave side, For a two flange beam, 
representative 8f aircraft frames, the flange axial load is 
approximately the applied moment divided by the distance between 
flanges. The applied loading, as illustrated, induces radial 
forces in the web (crushing in this case) and curling of flanges. 
The flange curling increases the maximum axial stress and induces 
transverse bending. 

The methods of analysis for the basic effects of curvature are 
well documented and result in using the Winkler-Bach formula: 

The synbols are defined in the List of Symbols and Z is a property 
of the area, 



The Z solutions have been tabulated in Reference 1 and the axial 
stresses can be calculated for various geometries. Tests have 
shown that there is an additional stress induced in thick flanges 
of I-beams due to rotation about their own neutral axis, (Refer- 
ence 2), However, a more significant increase in stress in 
I-beams is due to the radial forces and depends on the flange 
flexibility parameter of b*/tr. 

For most aircraft beams and frames, the web contributes only a 
small bending resistance, Neglecting the web contribution, the 
average axial stress is: 

- M = -  
Ox dwt 

and for very thin webs the flange free length is: 

With thin flanges the curling effect distorts the cross section so 
that plane sections do not remain plane and the axial stress 
varies along the flange width. 

Approximate solutions have been made for isotropic materials 
(Reference 1) and Bleich s solution was used, Bleich determined 
an effective half width as: 

so that the ratio of the average to peak circumferential stress 
can be determined* 

- 
o;~b  = 0 %,MAX - 1 

x,MAxb' and - - a 
Ox 

Correspondingly Bleich defined the maximum induced transverse 
bending to average axial stress ratio as: 



Values of a and p are available (Reference 1) as a function of the 
flange flexibility parameter b2/tr, Thus, once the average flange 
stress is petewined, the peak ox and o can be calculated. 

Y 
As stated, the Bleich analysis is approximate and for an isotropic 
material, It can be expected that curvature/flange flexibility 
effects will differ for a composite beam, However, the Bleich 
solution does offer a rapid assessment of the expected effects. A 
non-dimensional plot of the flange axial and bending stresses is 
presented in Figure 1b to be used as a guideline for curvature 
effects . 
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2.2 UH-QOA Frame Station 379 Loads 

Design loads for the composite curved frame were obtained from the 
BLACK HAWK loads analysis report, Reference 3, Crash condition 64 
subcase 500 was determined to be the most severe loading in the 
upper curved portion of the frame at Sta, 379 (rear frame support- 
ing the roof structures, Figure 2). The bending moment, axial 
load and shear distributions are presented in Figures 3, 4 and 5 
respectively, 

The most severe combination of loads affecting the inner cap 
(compression) are 7.23 kNm (64,000 in lb.) bending moment with an 
axial (compression) load of 53.8 kN (12,100 lb.) The shear at the 
peak bending moment is zero, The maximum shear is 36.0 kN (8,100 
lbs.). 

2.3 Composite Curved Frame Geometry and Design Loads 

The configuration that best represents the most severe loading 
condition for stability/strength of the curved portion of the 
composite frame is illustrated in Figure 6. The criteria is to 
represent the combined compression load at the inner cap from the 
bending moment and axial load and also to retain two, constant 20 
inch long, straight frame sections beyond the curved portion. 

To satisfy the preceding criteria and assure fracture would occur 
in the curved portion, a preliminary load analysis resulted in a 
specific load offset, as shown in Figure 6. 



Figure 2 ,  UET-60 Roof Structure and Frame Station 379 



CRASH CONDlTlON 
SUB-CASE 500 

BENDING MOMENT DIAGRAM kNrn (IN. - LB) 
(+ B.M. CAUSES TENSION IN THE OUTER CAP) 

POSlTlVE BENDiNG IS PLOTTED OUTSIDE THE FRAME 

Figure 3 ,  Bending Moment Diagram - UH-6OA - 
Frame S ta t ion  379 



CRASH CONDITION 

SUB-CASE 500 

AXIAL LOAD DIAGRAM kN (LB) 

(+ AXIAL LOAD PLOTTED ON OUTSIDE OF FRAME) 

POSITIVE AXlAL LOAD CAUSES TENSION ON CBAR CROSS-SECTION 

Figure 4, A x i a l  L o a d  D i a g r a m  - UH-6OA - 
F r a m e  S t a t i on  379 



CRASH CONDlf  ION 
SU&CASE 500 

SHEAR DIAGRAM kN (LEI) 

(+ SHEAR IS PLOTTED ON THE OUTSIDSE OUTSIDE OF THE FRAME) 

Figure 5, Shear Diagram - UN-GOB - Frame Stat ion 379 
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TENSION jRI THE 
OUTER CAP) 

Figure 7. Composite Curved Frame - Axial Load, Shear, 
and Bending Moment Diagram 



2.3.1 Loads Analysis of Composite Curved Frame 

'max = 7.23 kNm (64,000 in .  lb f )  (Reference Figure 3) (Node 1051) 

P (Axial Load) = 53.28 kN (12,100) (Reference Figure 4) (Node 1052) 

For the composite frame the centroidal distance (d) between frame caps 
is 11.43 cm (4.5 in.) 

Maximum Compression Cap Load is then 

- - -  7 .23  + 53.28 = 89.9 kN (20210 l b f . )  11.43 2 

The test specimen, as illustrated in Figure 6, hllows a simple end 
axial loading to obtain the maximum combined loads in the center 
of the curved section. A compromise was required to obtain the 
following: 

( a )  Maximum compression cap load. 
(b) Maximum moment for web crushing. 
(c) Maintain a constant twenty-inch section 

beyond the curved portion of the frame. 
(d) Assure fracture will occur in the curved 

portion. 

The solution resulted in a load offset (e) of 16.0 crn (6.3 in. ). 
The results are as follows: 



Load Curved Portion Constant Section at 
(Section AA Ends (Section B-B 
Figure 6) Figure 6) 

P. Applied Design 47.37 kN 47,37 ]rN 
Test Load (10,650 lbf.) (10,650 lbf.) 

Cap Axial Load Inner 90.16 k-N 32.69 kN 
(20,270 lbf. Comp.) (7350 lbf. Tens.) 

Outer 42.78 kEI 72.28 kN 
(9620 lbf. Tens,) (16,250 lbf. Comp. ) 

Maximum Bending Moment 7.59 IrNm 6-08 lcNm 
(Ref. Figure 6) (67,270 in. lbf.) (53,820 in. lbf.) 

- - 

Axial Load 47.37 kN 41.01 kN 
(Ref. Figure 6) (10,650 lbf,) (9220 lbf. ) 

Both caps are sized based on the 90.16 kN compression load. This 
assured fracture in the curved portion. The maximum moment in the 
curved portion (affecting web crushing) is within 5 percent of 
BLACK HAWK Design Loads. The cap peak compression load in 
the curved portion was obtained. 

2.4 Material Properties 

The material properties for unidirectional and woven graphite 
epoxy are contained in Table I1 of Reference 4. The room tempera- 
ture dry (RTD) typical properties are used to determine the 
response of the test structure. The "Bql properties at 125OF and 
68% RH would be used in design for crash loads, The cured thick- 
ness per ply for these materials is 0.304 mm (0.012 in.) for 
unidirectional graphite-epoxy and 0.355 mm (0.014 in.) for woven 
graphite-epoxy. 

2*5 Design Concepts 

Seven design concepts were investigated in this study. The 
selected design was a bead stiffened web which was assessed as a 
best solution for near constant web shear strength and weight/cost 
projectione 



The key features of the selected design, concept 1, are illus- 
trated in Figure 8. The web is of woven graphite/epoxy and 
consists of two back-to-back channels, each have three plies of 
woven material oriented at 45 degrees. The web is also beaded and 
0, 0/90 plies are used to increase the radial crush strength and 
stability. The 0 degree plies are of graphite/epoxy tape. The 
frame caps (flanges ) are also graphite/epoxy using tape and woven 
material, The flange ply layup is shown in ~igure 8, The initial 
design, 8A, was the result of using preliminary analysis methods. 
The finite element analysis (Section 4.0) indicated higher 
stresses from flange transverse bending (curling).  his curling 
is the distortion of the flange from the induced radial loads and 
results in increased axial stresses and transverse bending 
stresses. The design was modified to that shown in ~igure 8B and 
used for specimen fabrication. As a result of the tests, (section 
5.0), additional reinforcements were added to the flange web 
intersection as shown in Figure 8C. 

Concept 2 (Figure 9) 

Channels laid up by slitting or darting flanges to allow for 
stretch or overlap. Reinforcing channels laid up over silicon 
rubber blocks and inserted into beam channel. unigraphite rolled 
and molded into fillets. 

Silicon Rubber blocks will apply bagging pressure to channels and 
beam. 

Concept 3 (Figure 9) 

Channel laid up from each side from 45O woven material. Butts 
staggered at center of bend. Doubler plys of 0/90 woven material 
staggered on bend. Doubler strips of unigraphite added at center 
of bend to take compression. 

Concept 4 (Figure 9) 

Channels laid up from 45O woven material with darts in webs at 15O 
intervals. Darts staggered for each ply of web. Two 0/90 
doublers added, one 60' wide over whole curved section, the other 
30° wide in center. Two 90° unigraphite doublers at center. 

Concept 5 (Figure 10) 

The channels are formed continuously with woven graphite/epoxy 
materials with a f45 degree orientation. The web is split radi- 
ally and overlapped to provide structural continuity around the 



curve. Radial stiffeners of unidirectional strips are laid over 
the lapped web areas. The channels in the curved section of the 
frame, ar? bonded to a structural foam sheet (density of 70-9 
kg/m3, 4.4 lbs/ft3). Thus the web becomes a sandwich structure to 
provide additional stability. 

Concept 6 (Figure 10) 

The channels are formed in segments with woven graphite/epoxy 
materials with a f45 degree orientation. The segments are over- 
lapped and staggered to provide the structural continuity- 
Structural foam strips are placed under the overlap regions- 
Unidirectional strips are placed on the outsides of the overlap 
regions to provide additional reinforcement as radial stiffeners, 

Concept 7 (Figure 10) 

Unidirectional tape is wound over a mandrel. The direction of 
winding, as illustrated in Figure 10, concept 7, provides the 
orientations for an equivalent f450/90° layup. The resulting 
closed section is then cut along the centerline to form two 
channels. The channels are subsequently bonded back to back to 
form an I-section frame- The procedure is also adaptable for 
filament winding. 
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2.6 Preliminary Analysis (Calculated in the U.S. System of Units) 

2,6.1 Load Introduction Section - Reinforced Ends - All Concepts 

~aximum Load, ~pplied 
to Bolt No. 1, is 
54176 N(12180 lb.) 

For a 5/811 lockbolt, single shear allowable is 29150 lb. (Ref.5) 

double shear is 2 x 29150 = 58300 lb. 

F.S. = 58300/12180 = 4-8 

Bearing web (32 ply total) 56% 1 45O and 44% 0°/900 

A bearing allowable, F , is based on the data of Figure 20 pg 
50 of "The Strength ofb681ted Joints in Multi-Directional CFRP 
Laminatesg1 Composites, January 1977 (Ref. (6)) and Table I1 of 
NASA-CR-159384 (Ref. (4.)) .  

From Ref. (4) FCu = 200000 p.s.i. 

From Ref. (6) Feu = 233000 p.s.i. 

F c u ~  = 156000 p.s,i. 
- 

Assuming 100% k 45O graphite as the worst case, FBU = 120000 
p.s.i. (Ref. (4)) 

For design, a strength factor is used. 

- 
(Ref. ( 6 ) )  233000 

Strength Factor = - - - = 1.165 
(Ref. (4 ) )  200000 



The design bearing allowable is: 

F 
- C U ~  

F~~~ Design - FBU x Strength Factor x =-- 

F~~ (Ref. 4) 

= 120000 x 1.165 x 156000/233000 = 93,600 psi. 

M.S. = (93600/50750)-1 = 0.84 which is acceptable fo r  
preliminary design. 

Frame Caps - A l l  sections - inner and outer - a l l  concepts. 

PC = 20,270 lb .  (Ref. Page 15) .  

= 163,000 p s i  (Ref. 4 Table 11, AS/6350 Graphite/ 
Epoxy Tape, "BIf values for  crash 
condition). 

Cap area required = 20270/163,000 = 0.124 in2 
Cap width = 2 inches 
Number of 1 2  m i l  p l i e s  = 0.124/2 x .012 = 5.2 use of 6 p l i e s ,  

O 0  tape. 

Shear Web - 20 inch s t r a i g h t  sections - a l l  concepts 

Web thickness, t = .096 inches (8 ply f 45O G/E Fabric) 

Fsu = 36000 ps i  

E = 2 . 1  x l o 6  ps i  

G I 2  = 4.8 x l o 6  ps i  

Web allowable shear buckling load, 

Ref. (4 )  Table I1 



Ref. ( 7 )  equation 2.2.2-22 A i r  - Force Advance Composite Design 
Guide, Vole TI, Analysis, January 1973. 

- 
O 1 1  - D1l D 22 /D 12 +2D66 

Dl, = D2, = Et3/12 [ l-vf2]  = 380.3 l b .  i n .  

- 
D12 - "12 D22 = 292.4 l b .  i n .  

D66 = Gt3/12 = 353.9 l b .  i n .  

8 = 0.38 b = 4.5 in .  

Nxyapplied = V/d = 5320*/4.5 = 1182 lb./in.  (*Ref. Fig. 6 )  

- 
Fs - Nxy applied /t = 1182/.096 = 12,310 p s i  

CONCEPT 1 BEADED WEB 

For t he  web i n  t he  beaded curved sect ion,  

b = 1.45 i n .  which i s  t h e  average f l a t  d is tance  bead t o  bead. 

Then the  allowable shear  buckling load is: 

%ycr a l l .  = 1470/(1.45/4.5)2 = 14160 lb. / in.  

The web pa t t e rn  i s  c u t  a s  shown i n  Figure 7 t o  provide 
approximately f45O web mater ia l  i n  t he  curve. 

Beads - Curved Section 

Five beads a re  molded i n t o  each ha l f  of t h e  web i n  t he  curved 
sec t ion  t o  form f i v e  e l l i p t i c a l  cross  sec t ion  s t i f f e n e r s  a s  shown 
i n  Figure 7. The s t i f f e n e r  a t  t he  center  of t he  curved sec t ion  i s  
s ized based on the  crushing loads caused by bending the  curved 
frame . 

The bending moment M = 67,270 i n .  l b .  (Ref. Figure 6 )  
Axial Load. (comp.) PC = 10,650 lb .  (Ref. Figure 6 )  



The crushing load from the caps is; 

gout = M/hRo-Pc/2Ro where Ro = Radius of outer cap = 12.5 in .  

qin = M/hRi + Pc/2Ri where R i  = radius of inner cap = 8 in .  

The center s t i f f e n e r  i s  sized fo r  a maximum crushing load 
of: 

'crush = 2530(2.0)* = 5060 lb ,  

*Distance between s t i f f e n e r  center l i n e s  a t  inner cap. 

The s t i f f e n e r  cross section was sized t o  prevent column buckling, 
local  buckling (cr ippl ing)  and material fracture.  Each bead, 
making the s t i f f ene r ,  is 4 ply f 45O fabric ,  1 ply 0°/900 fabr ic  
and 1 ply O 0  tape, cap t o  cap (see Figure 7 ) .  

The compression s t r e s s  for  the s t i f f e n e r  is: 

Where ZAiEi = .896 x lo6  l b .  

- 6 
- (2*1 lo ) = 11,860 psi 

fc(45) .896 x 10 6 
(FcU = 19,000 p s i )  

6 
fc(o)  = 

5060 (17-6 x 10 = 99,390 psi 
.896 x 10 

6 
(Feu = 163,000 p s i )  

6 
fc(O/90) = 5060 ( l o s o  lo )= 56,470 psi 

., .896 x 10 6 (FcU = 56,000 p s i )  

. 
Column buckling and local  buckling allowables are  very large.  



A similar preliminary analysis was conducted for the webs in the 
curved section of concepts 2, 3, 4, 5, 6, and 7, Each web or 
stiffener was checked for shear buckling, compression fracture, 
column buckling and local buckling. 

The weight of each curved section concept and the straight section 
with loading pads was calculated based on the preliminary struc- 
tural analysis. 

2.7 WEIGHT AND COST ANALYSIS 

2.7.1 The weight of each curved section studied are summarized in 
Table I. A detailed weight analysis of each curved concept is 
presented on the following pages of this section. 

TABLE I 

Summary of Composite Curved Frame Concept Weights 

Concept Description Weight* 

Grams ( n3s ) 

Beaded Stiffeners 348.7 (.769) 

Radial Stiffeners 397.6 ( ,876) 

Thick Web (Butted Web) 366.8 (.. 808) 

Thick Web (Darted) 366.8 (.808) 

Sandwich Foam 365.4 ( .805) 

Foam Stiffeners 

Filament Wound 

*Only the weights of the curved section of the frames are con- 
sidered. 



Weight of Components for Curved Frame Concepts 
(Calculated in the U.S. System of Units) 

CONCEPT 1 (Beaded Stiffeners) 
Weight 

( lbs Grams 

CHANNEL WEBS 
3 ply woven graphite/epoxy 

48.2 x 3 x ,014 x .055 x 2 = (,223) 101.1 

CHANNEL FLANGES 
3 ply woven graphite/epoxy 

21.5 x -94 x 3 x .014 x ,055 x 2 = (.093) 42.2 

INNER AND OUTER CAPS IN CHANNEL FLANGES 
2 ply unidirectional graphite epoxy 
1 ply woven 

21.5 x 3.9 x .038 x .055 

STIFFENER DOUBLER 
1 ply unidirectional graphite/epoxy 
1 ply woven 

4.5 x 1.25 x 10 x .026 x ,055 

ADHESIVE 
.03 lb~./ft.~ 

48.3 + 21.5 x 21 x .03/144 

INNER AND OUTER CAPS (BONDED TO C m L  
FLANGES ) 

21.5 x 2 x 2 x ,038 x .055 

CURVED SECTION TOTAL WEIGHT 

CONCEPT 2 (Radial Stiffeners) 

CHANNEL WEBS 
Same as Concept 1 

CHANNEL FLANGES 
Same as Concept 1 

INNER AND OUTER CAPS IN CHANNEL FLANGES 
Same as Concept 1 

S'lCIFFENER WEBS 
2 ply woven graphite/epoxy 

48.3 x ,028 x ,055 



Weight 
CONCEPT 2 ( R a d i a l  S t i f feners  C o n t i n u e d )  

STIFFENER FLANGES 

- 
( l b s  G r a m s  

2 p ly  w o v e n  graphite/epoxy 
21.5 + 27 x .9 x ,028 x .055 = ( - 0 6 7 )  

STIFFENER ANGLES 
2 p ly  w o v e n  graphite/epoxy 

1.65 x 4.5 x 4 x .028 x .055 = ( . 0 4 6 )  

ADHESIVE 
S a m e  as C o n c e p t  1 

INNER AND OUTER CAPS (BONDED TO CHANNEL) 
FLANGES ) 

S a m e  as C o n c e p t  1 = ( . 1 7 9 )  

CURVED SECTION TOTAL WEIGHT ( . 8 7 6 )  

CONCEPT 3 ( T h i c k  Web B u t t e d  W e b )  

CHANNEL WEBS 
S a m e  as C o n c e p t  1 

CHANNEL FLANGES 
Same as C o n c e p t  1 

INNER AND OUTER CAPS I N  CHANNEL FLANGES 
S a m e  as C o n c e p t  1 = ( . 1 7 5 )  

DOUBLERS 
3 p ly  w o v e n  graphite/epoxy 

48.3 x 3 x ,014 x -055 

CENTER DOUBLER 
2 p l y  unidirectional  graphite/epoxy 

4.5 x 1.25 x 2 x .012 x .055 = ( . 0 0 7 )  

ADHESIVE 
S a m e  as C o n c e p t  1 

INNER AND OUTER CAPS (BONDED TO CHANNEL 
FLANGE ) 

S a m e  as C o n c e p t  1 

CURVED SECTION TOTAL WEIGHT 



CONCEPT 5 (Sandwich Foam) 
c LS 

3 ply woven graphite/epoxy 
12.5 xn/3 x 6.14 x 3 x .014 x 
,055 x 2 

INNER AND OUTER CAP 
2 ply unidirectional graphite/epoxy 
1 ply woven 

12.5 x 3.65 x -038 x -055 

DOUBLERS 
2 ply unidirectional graphite/epoxy 

4.5 x 1.25 x 8 x ,012 x -055 

FOAM CORE 
48.3 x .25 x 4.4/1728 

ADHES IVE 
48.3 x 2 x 21.5 x 2 x .03/144 

INNER AND OUTER CAPS (BONDED TO CHANNEL 
FLANGES ) 

Same as Concept 1 

CURVED SECTION TOTAL WEIGHT 

CONCEPT 6 (Foam Stiffeners) 

CHANNELS 
3 ply woven graphite/epoxy 

19-54 x 24 x .014 x ,055 

INNER AND OUTER CAPS 
Same as Concept 5 

FOAM STIFFENERS 
4.5 x 1.25 x 25 x 4 x 4.4/1728 

Weight 
( lbs Grams 



CONCEPT 6 (Foam Stiffeners Continued) 

STIFFENER DOUBLES 
Same as Concept 5 

ADHESIVE 
Same as Concept 1 

INNER AND OUTER CAP (BONDED TO CHANNEL 
FLANGES ) 

Same as Concept 1 

CURVED SECTION TOTAL WEIGHT 

CONCEPT 7 (Filiment Wound1 

CHANNEL 
12.5 x /3 x 6.14 x 6 x ,005 x 
,005 x 2 

STIFFENING 
5 x 7 x 6 x .005 x .005 

INNER AND OUTER CAP IN CHANNEL FLANGES 
Same as Concept 1 

ADHESIVE 
Same as Concept 1 

INNER AND OUTER CAPS (BONDED TO CHANNEL 
FLANGES ) 

Same as Concept 1 

CURVED SECTION TOTAL WEIGHT 

Weight 
( lbs Grams 



ESTIMATE WEIGHT OF COMPLETE COMPOSITE CURVED FRAIvZE SPECIMEN 

20" Straight Sections 

CHANNEL WEBS 
4 Ply Woven graphite/epoxy 

4-8 x 20 x ,014 x 4 x -055 x 2 = .590 
Two Sections 1.180 

CHANNEL FLANGES 
3 Ply Woven graphite/epoxy 

20 x 2 x 1.0 x 3 x .014 x -055 x 2 = .I88 
Two Sections .370 

INNER AND OUTER CAPT IN CHANNEL FLANGES 
2 Uni, 1 Woven graphite/epoxy 

20 x 2 x ,90 x 2 x .038 x .055 = ,150 
Two sections .300 

INNER AND OUTER CAP 
20 x 2 x 2 x .038 x ,055 = .167 

Two Sections .334 

ADHESIVE -114 

TABLE I1 COMPOSITE FRAME WEIGHT (LBS.) 



A preliminary analysis was conducted to develop the weight of a 
baseline aluminum frame- The resulting aluminum gages were 
c~rnparable~to the frame at Station 379 shown in Figure 2. 

ESTIMATE OF ALUMINUM CURVED FRAME 
(U.S. System of Units) 

Caps P = 20,270 lbs. (Ref. Page 15) 

Fcy = 75,000 p.s.i. (7075-T6 Extru.) ("B" Value) (Ref. 5) 

with 1" ,040 web A = .270 + .040 = .310 fc = 65390 p.s.i. 

Web 

q = N = 1182 lb./in. Fsu = 44000 p. s. i. (7075 clad "B") 
XY 

t = 1182144000 (. 75) = .035 use .040 

Stiffeners (assume 5) 

Pcrush = 5060 lb. (Ref. Page 24) 

Use Extrusions 

Try 3 / 4  x 3 / 4  x .050 = .075 ine2 + 1" Web = .075 + .040 = -110 in.2 
f = 46000 p.s.i. 
C 



ESTIMATE OF ALUMINUM CURVED FRAME 

1) Web 

2) Stiffeners 
5 x 4.25 x (1.5 x .050)(.1)= .16 lbs. 

3) Caps 

(12.5 + 8 
2 ) x 3 x .090 x .1 = -54 lbs. 

Rivets 

Assume 

3/4 pitch 
L = 12.5 + 8 + 5(4) = 40.5" In. 

40.5/.75 = 54 rivets 

AD-5 (5/32) = .00078#/Rivet 
54 (.00078) = .04 lbs. 

TOTAL ESTIMATED CURVE WEIGHT = .92 lbs. 

2-25 in. straight sections Stiff. 8/5 (-16) -28 
Webs 4.25 x 50 x .04 x .1 = -85 
Caps 50 x 3 x 090 x .1 x 2 = 2.16 
Rivets .08 

3.37 
Curve Weight .92 

TOTAL WEIGHT 4.29 lbs. 



2,7.2 COMPOSITE CURVED FRAME COST STUDY 

Prototype cost targets for the composite curved frame study are 
derived from the one-thousand unit (T-1000) labor hour value and 
then applied to an improvement curve to arrive at the one unit 
(T-1) cost target. The one-thousand unit labor value is based 
upon using semi-automated production techniques such as preplied 
broadgoods, and automatic knife cutting of the ply patterns. The 
prototype labor hour value is based on conventional manual produc- 
tion methods. Material cost has been priced out in 1982 dollars. 
A 30% scrap factor allowance has been included in the material 
cost estimate. Labor costs, including overhead and general 
administration costs are at $33/Hour. Material at $50 per pound, 

The cost of a baseline aluminum frame is based on 5.3 labor hours 
per pound of cabin structure and $3.10 per pound of aluminum 
material. 



TABLE 111. COMPOSITE CURVED FRAME COST STUDY 

CONCEPT 1 

Production T-1 
Unit T-1000 Prototype 
Labor Hours Labor Hrs . 

Inner Channel 3.55 25.1 

Outer Channel 3.55 25.1 

Inner Cap 1.22 8.1 

Outer Cap 1.32 8 5 

Bonded Assembly 1.62 8.2 

Loading Pad Plys u 10.4 

TOTALS 11.26 85,4 

Inner Channel 

Outer Channel 

Inner Cap 

Outer Cap 

Bonded Assy. 

Loading Pads 

TOTALS 

CONCEPT 2 

Production T-1 
Unit T-1000 Prototype 
Labor Hours Labor Hrs . 

Material 
Dollars 

Material 
Dollars 



TABLE I11 (Cont'dl) 

CONCEPT 3 

Production T-1 
U n i t  T-1000 Prototype 
Labor Hours Labor H r s  . 

Material 
Dollars 

Inner Channel 

O u t e r  Channel 

Inner Cap 

O u t e r  Cap 

Bonded Assy. 

Loading Pads 

TOTALS 

CONCEPT 4 

Production T-1 
U n i t  T-1000 Prototype 
Labor Hours Labor H r s  . 

Material 
Dollars 

Inner Channel 

Outer Channel 

Inner Cap 

Outer  Cap 

Bonded Assy. 

Loading Pads 

TOTALS 



TABLE I11 (Cont'd) 

Inner Channel 

Outer Channel 

Inner Cap 

Outer Cap 

Precast Foam 

Bonded Assembly 

Loading Pads 

TOTALS 

Inner Channel 

Outer Channel 

Inner Cap 

Outer Cap 

Precast Foam 

Bonded Assembly 

Loading Pads 

TOTALS 

CONCEPT 5 

Production T-1 
Unit T-1000 Prototype 
Labor Hours Labor Hrs 

3.6 25.1 

CONCEPT 6 

Production T-1 
Unit T-1000 Prototype 
Labor Hours Labor Hrs 

3.7 26.2 

Material 
Dollars 

110 

Material 
Dollars 



TABLE I11 (Contrd) 

FRAME CONCEPT 7 

Production T-1 
Unit T-1000 Prototype Material 

Dollars ' Labor Hours Labor Hrs 

Inner Channel) 10.0 
Outer Channel) 

Inner Cap) 
Outer Cap ) 

Bonding 1.9 9.6 19 

Loading Pads 

TOTALS 14.3 106.4 $ 487 

2.8 SELECTED DESIGN FOR FABRICATION AND TEST 

Concept number 1 (beaded stiffener) was selected for detailed 
analysis and fabrication based on the data presented in Table IV. 
This concept resulted in a best cost/weight reduction over the 
aluminum baseline frame. 



TABLE IV 

Selection Of Composite Curved Frame Concept 

Production Production ACost* AWt. * A Cost/A Wt. Remarks 
Cost ( $ ) Weight (lbs) ( $ )  (lbs. ) ($/lbs. 

Baseline 
Aluminum 7 64 4.290 

concepts Cost savings, Low 
1 699 3.637 -65 +. 653 -99.54 Manufacturing Risk. 

Lower Cost Savings, 
3 and 4 7 04 3.676 -60 +. 614 -97.72 Low Risk. 

Lowest Cost Savings, 
2 745 3.744 -19 + .546 -34.79 Low Risk. 

Small Cost Increase, 
6 778 3.635 +14 +. 655 +21.37 Low Risk. 

Cost Increase, 
5 821 3.673 +57 +. 617 +92.38 Low Risk. 

High Manufacturing 
7 9 54 3.564 +I90 +. 726 +261.70 Risk & Cost Increase 

* + A Cost is a cost increase over the baseline aluminum frame. 

+ A Wt. is a weight savings with respect to the baseline. 



3.0 FABRICATION OF FRAMES 

During the initial curved frame preliminary design and analysis 
the frame geometry, height, cap width, overall lengths, and 
material lay-ups were established to allow lead time for the 
fabrication of molds. The molds were developed from the original 
frame drawing EWR 55187A (Figure 8). The mold for fabrication of 
the channels was constructed as an aluminum female mold with no 
interior protrusions for beads (Concept l), or provisions for foam 
core (Concept 5 and 6). Based on the selected design, aluminum 
inserts would be fastened into the mold to produce the desired 
channel web contours. The mold for the channels is shown in 
Figure 11. 

A single aluminum mold, fabricated to the outer contours of the 
channel flanges, was used to produce the inner and outer frame 
caps. The cap mold is sketched in Figure 12. 

The frame components, two channels and the caps were laid-up on 
the molds as required and cured. The components were then as- 
sembled with film adhesive, vacuum' bagged and the adhesive cured. 
A completed frame is shown in Figure 13. 

Six frames were fabricated under this study. The first frame was 
used for tool try-out only. Five frames were statically loaded to 
fracture. Each frame was weighed after the components were 
bonded. The weight of each frame is given in Table V. 

TABLE V 
Composite Curved Frame Weight after Bonding 

Frame 
Weight 

Grams (Pounds ) 

Tool Try Out 2287.65 5.050 

Test Specimen No. 1 2298.98 5.075 

Test Specimen No. 2 2310.30 5.100 

Test Specimen No. 3 2303,51 5.085 

Test Specimen No. 4 2242.35 4.950 

Test Specimen No. 5 

Average Weight 2295.80 5.068 

Calculated 2246.88 4.960 (Ref. Table 11) 



Figure 11, Composite Curved Frame Channel Mold 
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Figure 12, Composite Curved Frame Inner and Outer Cap Mold 
(Sketch) 



Figure 13, Composite curved Frame 



4.0 DETAILED ANALYSIS OF THE TEST FRAME 

4.1 Finite Element Analysis 

A finite element model of the graphite/epoxy curved frame was 
developed as shown in Figure 14. Quadilateral and triangular 
elements with combined membrane and bending stiffness were used to 
obtain strain distributions in the test specimen curved region. 
Strain contour plots for the inner cap, and the outer cap are 
shown in Figures 15 and 16. Maximum compressive strains on the 
inner cap occur at the center of the curve at section A-A, Figure 
15. Maximum tensile strains on the outer cap occur at the center 
of the curve at section B-B, Figure 16. Predicted deformed shapes 
for the inner and outer caps in the curved region are shown in 
Figure 17. These shapes indicate that the free edges of the inner 
and outer cap bend towards each other. The axial and transverse 
magnitudes and distributions for the inner cap, over the center 
bead, indicated an anticlastic behavior of the cap. 
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Figure  14. NASTRAN Model - Beaded Curved Frame 
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Figure 15. S t r a i n  P l o t s  - Composite Curved Frame - 
Inner Cap 
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Figure  16. S t r a i n  P l o t s  - Composite Curved Frame - 
Outer Cap 



INNER 

Figure 1 7 .  S t a t i c  Deformation - Inner and Outer Cap - 
Composite Curve Frame 



5.0 STATIC TEST 

5.1 T e s t  F a c i l i t i e s  

The composite frames were t e s t e d  a s  shown i n  Figure 18. For 
s a f e ty  reasons, the  specimens were t e s t e d  i n  a prone posi t ion.  
The t e s t  load was applied as  shown i n  Figure 18 which duplicated 
frame bending, shear  and ax i a l  forces with a s ing l e  po in t  load 
applicat ion.  The test  f a c i l i t y  was capable of applying a s ing l e  
load of 88.96 kN (20,000 l b s )  i n  incremental loads. 

The t e s t  specimens were no t  d i r e c t l y  at tached t o  the  tes t  f a c i l i t y  
bu t  r a the r  f r e e  standing with t he  hydraulic cyl inder.  The t e s t  
specimens were supported by the  load horns and associated hard- 
ware. 

Under test  condit ions,  i - e . ,  frame bending, the  frame s t r u c t u r e  
would tend t o  warp ou t  of plane. I t  is  therefore  necessary t o  
r e s t r i c t  any def lec t ion  by sandwiching the  frames between hori-  
zontal  beams and the  f l oo r  a s  shown i n  Figure 18. In the  unloaded 
condition there  was no contact  between the  specimen and f a c i l i t y .  

The purpose of these  t e s t s  was t o  demonstrate the  s t r u c t u r a l  
i n t e g r i t y  of a curved composite fuselage frame u t i l i z i n g  improved 
design and fabr ica t ion  methodology. 

5.2 S t r a in  Gaging 

The composite t e s t  frames were s t r a i n  gaged s imi l a r ly  t o  t h a t  
shown i n  Figures 19 through 22. In addi t ion t o  s t r a i n  gages, load 
and frame def lec t ion  readings were required. 

S t r a in  gages were located on the  frame caps and web as  determined 
from the  NASTRAN analys is .  Axial s t r a i n  gages were used f o r  the  
frame caps and r o s e t t e  s t r a i n  gages were used on both s ides  of the  
web. The frame ax i a l  def lec t ion  was monitored with a DCDT ( d i r e c t  
current  d i f f e r e n t i a l  transformer) a s  indicated i n  Figure 19. 
After  t he  f i r s t  t e s t  completion a l l  t he  s t r a i n ,  load and deflec- 
t i o n  data  were reduced t o  determine the  bending moments, ax i a l  
loads and shear loads. A p l o t  of s t r a i n s  vs.  t e s t  loads were 
p lo t ted  and compared t o  those predicted by NASTRAN analys is .  A 
Hewlett Packard 9825-T desk top computer and 7225A Graphics 
P l o t t e r  were used f o r  r e a l  time data  acquis i t ion  and data  reduc- 
t ion .  
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Figure 18. Sketch of the Loading.Fixture 
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Figure 19. Composite Curved Frame Strain Gage Location - 
Specimen No, 1 
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Figure 20. Composite Curved Frame Strain Gage Location - 
Specimen No. 2 
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Figure 21. Composite Curved Frame Strain Gage Location - 
Specimen No. 3 
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Figure 22. Composite Curved Frames Strain Gage Locations - 
Specimens 4 and 5 



5.3 Experimental Tests 

S t a t i c  t e s t s  were performed t o  demonstrate the s t ruc tura l  in te -  
g r i t y  of the  curved composite fuselage frames. 

An i n i t i a l  phase consisted of incrementally loading the t e s t  
specimen t o  40% of the  10650 l b  design load. During t h i s  .phase 
the t e s t  r e su l t s  were compared t o  those predicted by NASTRAN 
analysis.  The load was then released. 

The f i n a l  phase consisted of incrementally loading the t e s t  
specimen u n t i l  fracture.  A t  40% of the design crash load, a 
comparison was made with the i n i t i a l  loading. 

The t e s t  load was designed t o  simulate crash bending moments, 
axial  loads and shear loads. 

Stra in  gages located along the  webs, caps and s t i f f ene r s  were 
analyzed a t  a l l  t e s t  l eve ls  with a Hewlett Packard 9825-T desk top 
computer. One gage located a t  the predicted fracture  s i t e  was 
monitored t o  warn t e s t  personnel of impending fracture.  

The t e s t  r e s u l t s  were plot ted as axial  deflection vs. load and 
s t r a i n  vs.  load for  each of the gage locations. A s  a cross-check, 
the frame bending, axial  load and shear load a t  40% and 100% 
design crash load, were determined. 

The r e s u l t s  were compared t o  those predicted by NASTRAN and were 
used as a data base fo r  any design changes. 

5.4 S t a t i c  Test of the  F i r s t  Specimen 

The loading was made with the t e s t  specimen held i n  the f ix ture  
supports. 

Stra in  gage data was obtained a t  each 500 l b .  load increment. The 
gage data,  as shown i n  Figure 23,  24, 25 and 26, showed t h a t  the  
s t r a ins  were close t o  the NASTRAN predictions. 

No problems were encountered a t  the  8000 l b  (75% design load) 
level  and the data of Figure 24 shows t h a t  gage CTS 2, cap com- 
pression t o t a l  s t r a i n ,  was l inea r  with loads. When attempting t o  
go t o  8500 lb .  (80% design load) the frame twisted tors ional ly  i n  
the f ix tu re  and the t e s t  was stopped. 



The specimen was removed from the t e s t  f ix tu re  and visual ly  
inspected, No damage could be observed and it was decided t o  
r e t e s t  with minor modifications. The modification was a balance 
check of the  load c e l l s ,  An unbalance of the  load c e l l s  induced a 
torsion on the specimen. Supports were added t o  the t e s t  f ix ture  
t o  prevent tors ional  ro ta t ion  of the  frame specimen. 

The s t a t i c  r e t e s t  was conducted using the modified fixture '  and 
checking the load c e l l  balance. A s  fo r  the f i r s t  t e s t ,  the  s t r a i n  
data was obtained a t  each 500 lb .  load increment up t o  7500 lb .  
The load-strain stayed l inea r  fo r  gages CTS 1, 2 and 3 ( locations 
shown i n  Figure 1 9 ) -  A s  i l l u s t r a t e d  i n  Figure 24, the CTS 2 gage 
readings were ident ica l  with the  f i r s t  loading re su l t s .  When 
attempting t o  go t o  the 8000 lb .  load level  the inner cap frac- 
tured i n  compression. Location of f racture  was under gages CTS 1 ,  
2, and 3. 

I t  was suspected t h a t  some damage had been induced from the 
twist ing action t h a t  was caused i n  the f i r s t  loading. 

Stra in  gage data for  the  f i r s t  and second loadings were compared. 
I t  was found t h a t  the s t r a i n  gage readings of the  s t i f f e n e r ,  BTS 5 
and 6 ,  were the only ones t h a t  dif fered i n  the f i r s t  and second 
loadings, as shown i n  Figure 27. The beaded s t i f f e n e r  gages are  
l inear  with load and nearly of the  same values as  i n  the f i r s t  
loading. For the second loading these gages begin t o  deviate from 
l inea r i ty  a f t e r  2000 lbs .  Thereafter the gages showed t h a t  the  
s t i f f ene r  was becoming unstable. 

The in te rpre ta t ion  was t h a t  the f i r s t  loading damaged the s t i f -  
fener and t h a t  i n i t i a l  f racture  was due t o  column buckling of the 
s t i f f ene r .  The r e s u l t  was t h a t  the  compression cap became un- 
supported and the induced additional s t resses  lead t o  f rac ture-  

Based on the  r e su l t s  of the  s t r a i n  gage survey it was decided t o  
t e s t  the second frame t e s t  specimen without modification. 

5.5 S t a t i c  Test of the  Second Specimen 

The loading was made with the specimen held i n  the t e s t  f ixture .  

Stra in  gage data was obtained a t  each 500 lb .  load increment. The 
gage data, as shown i n  Figure 28, showed t h a t  the  s t r a i n s  were 
again close t o  the NASTRAN predictions and the data of the  f i r s t  
t e s t  specimen. 



Testing was stopped a t  approximately the 9500 l b ,  load level  when 
it was observed t h a t  the  two gages on the beaded s t i f f e n e r  (Gages 
BTS 1 and 2 )  began t o  deviate as  shown i n  Figure 30. The devia- 
t ion  was interpreted as the  beginning of an i n s t a b i l i t y  caused by 
weakening of the  layup i n  the radius between the s t i f f e n e r  and the 
compression cap. 

The drawing fo r  the composite curved frame was revised ( ~ e v i s i o n  
C )  t o  reinforce the bead t o  cap radius area as shown i n  Figure 8. 

The radius reinforcements were bonded t o  specimens 2 and 3. 

Reinforced frame specimen No. 2 (Rev. C )  was s t a t i c a l l y  loaded t o  
fracture:. A t  101% design load, the  frame fractured i n  the 
s t r a igh t  constant section near the  loading pads. A photograph of 
the  f racture  is shown i n  Figure 31. The fracture ,  i n  the  constant 
section,  was thought t o  be a cr ippl ing type of f racture .  

S t ra in  data,  i n  the  curved section of the frame (Ref. Figure 29), 
indicated t h a t  no damage had been done t o  t h a t  section.  The 
s t r a i n  gages on the beaded s t i f f e n e r  (gages BTS 1 and BTS 2 )  did 
not deviate, compared t o  the previous loading, as  shown i n  Figure 
30. 

5.6 S t a t i c  Test of the  Third Specimen 

Frame Specimen No. 3 was reinforced i n  the s t r a igh t  sections as  
shown i n  the drawing EWR 55187 Rev. D. The frame was loaded t o  
fracture.  A t  84% design load, the  frame fractured i n  the same 
manner as  No. 2 (Rev. C ) ,  No damage appears t o  have been done t o  
the curved section of the  frame. Gages BTS 1 and BTS 2 did not 
deviate as  shown i n  Figure 33. 

The added reinforcement on the t h i r d  frame was believed t o  have 
lowered the s t resses  i n  the s t r a i g h t  section and prevent what was 
thought t o  be a cr ippl ing type of fracture.  Since the frame 
s t r a igh t  section fractured a t  a lower load than frame specimen 
number 2 ,  a study was conducted t o  investigate the behavior of 
frames 2 and 3 .  
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Figure 23, Deflection of Composite Curved Frame - 
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Figure 24. CTS 2 Load-Strain Data Second Loading of 
Specimen No, 1 
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Figure 25. Applied Load as a Function of S t r a i n  - Outer Cap - 
Bottom of Center Bead - Gage CTS 4 Specimen No, 1 
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Figure 26. Applied Load as a Function of Shear Strain - 
Web in Constant Section - Gage No. WRC - 
Specimen No. 1 
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Figure 29. Applied Load as a Function of Strain - Inner Cap - 
Top of Centerline Bead - Gage No. CTS 2 - 
Specimen No. 2 Rev. C 
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Figure 30, S p e c i m e n  No. 2 - B e a d e d  S t i f f e n e r  
L o a d  - S t r a i n  D a t a  - B a s i c  Frame 
( R e v .  B )  and R e i n f o r c e d  ( R e v .  C) 



Figure 3 % +  Fracture - Straight Section - 
Composite Curved Frame - 
Specimen No, 2 Rev, C 
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Figure 32. Applied Load as a Function of Strain - 
Inner Cap - Top Center Bead - Gage No. CTS 2 - 
Specimen No, 3, Rev. D 
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F i g u r e  33 .  S p e c i m e n  N o .  3 ,  R e v .  D ,  B e a d e d  S t i f f e n e r  ~ o a d  - 
Strain D a t a  ( H e w l e t t  P a c k a r d  9825-T C o m p u t e r  P l o t )  



6,0 ELEMENT ANALYSIS, DESIGN AND TEST 

The reinforcement of the straight section of frame No. 3 was 
accomplished by an application of a wet layup consisting of three 
plies of 0/98 graphite epoxy fabric and EA956 resin. The, wet 
layup was placed directly on the outer frame cap, bagged, vacuum 
applied, and room temperature cured for 24 hours. The purpose of 
the 3 ply 0/90 graphite epoxy "fix1' was to increase the cap 
thickness and lower the flange width to thickness ratio (b/t) 
thereby increasing the "allowable cripplingll stress. Since the 
"fixIf did not increase the strength of the straight section of the 
curved frame an IR&D program was conducted by Sikorsky to study 
the llcripplinglf problem. 

6.2 CRIPPLING ANALYSIS 

A three dimensional finite element model was developed to analyze 
the stress distribution of the frame cap in the straight section 
at the point of fracture. Three finite element models were 
analyzed. The first model represented the layup of the lower cap 
in the straight section of frame specimen number 2. The second 
model represented the layup on frame specimen number 3. The third 
model represented the basic lamp as frame number 2 with an 
addition of three plies of f45O graphite epoxy fabric. The three 
models are shown in Figures 34, 35 and 36. 

The results of the three-dimensional (3-D) finite element analysis 
showed a high transverse tensile stress (peel) at the free edge of 
models 1 and 2 and a transverse compression stress at the free 
edge of model 3. The analysis results are shown in Figures 34, 35 
and 36. The maximum transverse stress in each case is developed 
at the interface between the f45O web plies and the 0°-0°/900 cap 
plies as sketched in Figure 37. 

The transverse stress through the thickness of the layups is due 
to the Poisson effect of the plies in the layup. This effect is 
illustrated in Figure 37. 

6.3 ELEMENT DESIGN AND TESTING 

Honeycomb beams with graphite epoxy faces were designed, fabri- 
cated and tested to substantiate the results of the three dimen- 
sional finite element analysis, 



Three configurations, shown in Figure 38, were designed to be 
loaded by four point bending. The first configuration (A) was 
designed with graphite/epoxy faces laid up to duplicate the 
tension and compression caps of the straight section of curved 
frames 1 and 2. The second configuration (B) was designed similar 
to configuration (A) except 3 plies of 0/90 graphite fabric were 
added to the compression face as shown in Figure 38B. The third 
configuration (C) was similar to configuration (A) except 1 ply of 
O0 graphite/epoxy tape and 2 plies of f45O graphite/epoxy fabric 
were added to the compression face. Two beams of each configura- 
tion were fabricated and tested. 

The ply orientation using the O0 graphite/epoxy tape and the 2 
plies of f45O graphite epoxy fabric were selected as a candidate 
to increase the strength of the straight portion of the frame. 
The O0 tape decreases the overall axial compression stress and the 
2 plies of f45O produce a transverse compression stress through 
the thickness of the frame cap. 

A prediction of the axial compression strain (E ) and the trans- 
verse tensile strain (E ) on the thin edge of t%e graphite/epoxy 
face was made for confTguration A prior to strain gaging each 
honeycomb beam and testing. At a load P, of 3000 lbs., the 
bending moment M, in the 4 inch test section (see Figure 39) is 
(3000/2) x 8.5 = 12,750 in. lbs. The compression load is: 

- - - - -  - 11333 lbs. 
'c - d - 1.125 

The compression stress is: 

fs = P/A = 11333/2.0 ( .118)  = 48,021 psi 

The effective axial modulus EA of this layup was 10.1 X lo6 psi. 

The axial strain, sc = 48021/10.1 X lo6 = 4754 p in./in. 

The transverse tensile stress in the epoxy at the overall axial 
compression stress of 48,021 psi, was estimated to be 8000 psi, 
based on the 3-D analysis. Assuming a modulus of 1.5 X lo6 psi 
for the epoxy resin, the strain cT, would be 8000/1.5 X lo6 = 
5330~ in./in. The predicted strains are shown in Figure 39* 



Two small strain gages were bonded to the edge of the compression 
face of the honeycomb beams as shown in Figure 39.  Each gage had 
a gage length of .79 mm (0.031 inches). All beams were loaded by 
four point bending to fracture. 

6.4 TEST RESULTS 
, 

The strain gage data for each honeycomb beam configuration is 
shown in Figure 39.  The transverse gage substantiated the 3-D 
finite element analysis. 

A fracture in the compression face was obtained, as shown in the 
photo of Figure 40, for configuration B. The fracture was similar 
to the frame fracture shown in Figure 30- 

6.5 CONCLUSIONS FROM HONEYCOMB BEAM TESTING 

1) A combined axial and transverse strain caused the fractures 
in the straight sections of frames 2 and 3 .  

2) The 3-D finite element analysis predicted transverse strains 
at the free edge. The test data substantiated the analysis. 

3) The use of f45O graphite/epoxy fabric reduced the transverse 
tensile strain and eliminates the splitting problem. 
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Figure 34. Transverse Stress Contours through 
Flange Thickness (Basic Lay-up) 
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Figure 35. Transverse Stress Contours Through Flange Thickness 
Thickness (Basic Lay-up plus 3 plies 0/90° Graphite) 
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Figure 36, Transverse Stress Contours Through Flange Thickness 
(Basic Lay-up Plus 3 Plies 45O Graphic Fabric) 
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Figure 40,  Fractured Compression Face of Honeycomb 
Beam Configuration B 



7.0 COMPOSITE FRAMES REINFORCED IN THE STRAIGHT SECTION 

Two composite curved frames (frame numbers 4 and 5) were fabri- 
cated per drawing Em55187 Revision E, based on the results of the 
data from the honeycomb beams. Strain gages were installed as 
shown in Figure 22. 

Each frame was statically loaded to fracture. Both frames frac- 
tured in the curved section. Frame No. 4 fractured at an applied 
load of 33.3 kN (7600 lbs) or 71% of design load. Frame No. 5 
fractured at an applied load of 37.8 kN (8500 lbs) or 80% of 
design load. A preliminary review of the strain data plotted 
during the tests of both frames indicates that the cause of the 
fracture was due to the inner (compression) cap and beaded stif- 
feners becoming unstable. 

The instability that developed is indicated by the strain plots in 
Figures 41 and 42 of gages TS-2 and TS-3 on the compression caps 
of both frames. Gages TS-5 and TS-6 on the beaded stiffener of 
both frames, Figures 43 and 44 also indicated instability. These 
plots were developed by the Hewlett Packard 9825-T desk top 
computer and 7225A graphics plotter as each test was in progress. 

Since the frames, numbers 4 and 5, fractured at loads lower than 
frame number 2, it was decided to compare the lay-up in the 
stiffener/web/compression cap area of each frame. Micro- 
photographs shown in Figures 45, 46, and 47 were obtained for the 
radius in the transition between the stiffener/web and inner cap 
of each frame. 

From the microphotographs there appears to be a difference in the 
thickness of the lay-up in the radius of each frame. If the 
effective modulus of the lay-up is assumed approximately equal for 
each frame, then the load at which the strains of each bead 
started to deviate would be a function of the square of the 
thickness through the radius. Table VI summarizes the load at 
strain deviation of the stiffeners and the measured thickness in 
the transition. Figure 48 is a plot of load at bead strain devia- 
tion as a function of the radius thickness squared, 

The differences in the thickness of the stif fener/web/cap radii 
appear to be caused by the method of laying the ply materials into 
the channel mold. A teflon tongue depressor was used to position 
each ply into the corners of the mold. Several people, laying-up 
a total of twelve channels (two for each frame) would result in 
uneven pressure being applied with the tongue depressor to the 
corners of the mold. 
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Figure 41 Specimen No. 4 Rev. E, 
Compression Cap Strains - 
Gages TS-2, TS-3 



Compressive Load Lbs 

Figure 42 Specimen No. 5 Rev- E, 
Compression Cap Strains - 
Gages TS-2, TS-3 



Compressive Load Lbs 

Figure 43 Specimen No. 4 R e v ,  E, 
Beaded St i f fener  Load - 
Stra in  Data (Hewlett Packard 
9825-T Computer P l o t )  



Compressive Load Lbs 

Figure 44 Specimen No. 5 Rev. E ,  
Beaded St i f fener  Load - 
Strain Data (Hewlett Packard 
9825-T Computer P lo t )  









TABLE VI. BEADED STIFFENER DATA SUMMARY 

LOAD AT STRAIN RADIUS t2 
DEVIATION OF t \ 

BEADED STIFFENER 

No. 2 R e v .  B 37.81 kN 
(Fig. 31) 

No. 2 R e v ,  C 49.37 kN 
(Fig. 31) 

No. 4 R e v .  E 22.24 kN 
(Fig. 43) 

No. 5 Rev. E 28.91 kN 
(Fig. 44) 

- -- 

4-24 mm 
(Fig. 45) 

5.33 mm 
(Fig. 45) 

3.70 mm 
(Fig. 46) 

3.81 mm 
(Fig. 47) 





8.0 CORRELATION OF ANALYSIS AM) TEST 

Prior to conducting static tests to fracture of each frame, a 
prediction of the maximum strain was determined based on the 
NASTRAN analysis. The maximum strain, from the NASTRAN analysis, 
was located on the inner (compression) cap, at the center line of 
the "Ii1 section above the center bead. The purpose of the predic- 
tion was to monitor the performance of each frame, the loading 
fixture, the strain gage, and to warn test personnel of impending 
fracture. The strains, predicted by NASTRAN, correlated very well 
in the linear range, as shown in Figures 24, 28, and 32. 

Axial strain distributions, across the flange, were obtained in 
the curved and straight sections during testing. The correlation 
with the NASTRAN analysis for the curved section is shown in 
Figure 49A. The strains in the straight section during testing 
are shown in Figure 49B. 

There were some questions on whether the peaking of the axial 
stress distribution would be reduced as the load went past the 
nonlinear load strain region. A measure of the effect would be 
the ratio of the gage 1 (at the centerline) to gage 3 (most 
outboard) strains, These ratios are presented in Figure 50 and 
indicate an increase in the axial strain ratios. This increase is 
opposite to that which would be expected for metals where plastic 
relief would reduce strain ratios, 

The transverse strain was measured at gage no. 7, The NASTRAN- 
predicted and the test-measured strains are shown in Figure 51. 
The analysis appears to adequately predict the induced transverse 
stress. 

8.1 Finite Element Study 

In order to assess the Bleich stress ratios a finite element 
analysis was conducted on the curved frame structure. The struc- 
ture was transferred to aluminum with variations of the flange 
thickness from 1.27 mm to 7.62 mm (.05 to .30 inches). The 
average free flange distance, including effects of the web stif- 
fening, was 15 -24 mm ( .60 inches) and used in the flange flexi- 
bility parameter calculations. 

The calculated ratios of maximum axial and maximum transverse-to- 
nominal axial stress are plotted in Figure 52. The NASTRAN 
results are similar to the Bleich values shown in Figure 1. The 
axial ratios are almost the same, but the NASTRAN values are well 
below the Bleich predictions for transverse bending. 



The analysis and test data (Frame No. 2, Rev. C) relate to a 
flange flexibility value of .225, However, it should be noted 
that the flange axial modulus, for the composite frame, is over 
twice the transverse modulus. A comparative summary of the 
NASTRAM analysis, Bleich analysis and Composite Curved Frame test 
results is presented below. 

Aluminum Composite Frame 
\ 

Bleich Frame 
Analysis NASTRAN NASTRAN Test 

Analysis Analysis 



8000 
TEST 0 9 T A  

AT 9500 LB LOAD 

6000 

COMPRESSION 

STRAIN 

b I N N  4oocl 

2000 

0 NASTRAN FRAME 

1 INCH CAP WIDTH , 
FRAME 

A. CURVED SECTION 
NASTRAN CORRELATION 

1 

FRAME 

B. STRAIGHT SECTION 
TEST DATA 

Figure 49. Compression Cap Strains Across Half Cap Width - 
Frame No. 2 Rev. C 
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Figure 50. Axial Strain Ratio Increases with Applied Load 
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TRANSVERSE 

TENSION STRAIN 
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ELEMENTS 
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Figure 51. Transverse.Bending Strain 
(Tension Side) 
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Figure 52. NASTRAN Analysis, Aluminum Frame 



Based upon the design, analysis,  fabrication and t e s t ing  of the 
f ive  composite curved frames the following conclusions a re  given: 

1. The Bleich solution can be used t o  determine the preliminary 
s iz ing  and lay-up for  curved frames of composite materi,als. 

2 .  The NASTRAN analysis can predic t ,  with good accuracy, the  
s t r a i n  d is t r ibut ions  i n  the composite curved frame. 

3 .  The fracture  of Frame Specimen Number 1 (Rev. B )  i n  the 
curve, was due t o  the beaded s t i f f ene r s  becoming unstable 
The s t i f f ene r s  became unstable due t o  high s t r e s ses  i n  the 
stiffener/web/cap radius interface.  The compression s t r a i n s  
i n  the beaded s t i f f ene r s  were well below fracture  s t r a i n s  for  
the materials used. 

4. The beaded s t i f f ene r s  of Frame Number 2 ,  Rev. B became 
unstable and the t e s t ing  was stopped. The radius interface 
was reinforced and the  curved section (Rev. C )  sustained a 
load 101% of the  design load when the frame fractured i n  the 
s t r a i g h t  section. The beaded s t i f f ene r s  were s t ab le  due t o  
the reinforcements. Bead compression s t r a i n s  were low. 

5. The fractures  of Frame Specimens Number 2 ,  Rev. C and No. 3, 
Rev. D,  i n  the  s t r a i g h t  section were not caused by cr ippl ing 
as or ig ina l ly  believed. The cause of f racture  was due t o  
transverse s t r a i n s  through the  flange thickness. The analy- 
sis, design and t e s t ing  of the  honeycomb beams substantiated 
the transverse s t r a i n  e f fec ts .  

6.  The fractures  of Frame Specimens Number 4 and 5, Rev. E ,  i n  
the curve, were caused by the bead s t i f f ene r s  becoming 
unstable. Although the  lay-up i n  the radius was s imilar  t o  
Revision C requirements, the  overall  thickness was l e s s  or  
equal t o  Revision B requirements, and t h i s  caused the s t i f -  
fener t o  become unstable. S t i f fener  s t r a i n s  were low, 

7. The fracture  of a l l  frames tes ted  was caused by i n s t a b i l i t y  
from geometry and lay-up of materials ,  There appears t o  be 
enough material i n  the  frames for  the frames t o  f rac ture  a t  
the f rac ture  s t r a i n  of the materials ,  provided s t a b i l i t y  is 
maintained, and a 3-D analysis i s  performed i f  cr ippl ing is 
suspected. 



10.0 RECOMMENDATIONS 

The following studies are recommended: 

1. Based on the current data, develop design/analysis data for 
composite curved frames. 

Although this program concentrated on the crushing of webs 
and stiffeners of composite curved frames a program should be 
conducted to determine the effects of reverse loading on the 
curve. A reverse loading in the NASTRAN model would result 
in a sign change for all strains. No additional graphite 
epoxy material may be required. However the frame caps in 
the curve would develop a reversed edge deflection (deflect- 
ing away from the frame) and this may result in high peel 
strains which could separate the two cap strips from the two 
channel sections. 

3 .  A study is recommended to determine criteria for the design 
of the interface between frame webs and caps in a curved 
frame structure. Also a method of fabrication is recommended 
to provide required thicknesses through the interface. 
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