58 research outputs found

    Movements and spawning of white marlin (Tetrapturus albidus) and blue marlin (Makaira nigricans) off Punta Cana, Dominican Republic

    Get PDF
    With a focus on white marlin (Tetrapturus albidus), a concurrent electronic tagging and larval sampling effort was conducted in the vicinity of Mona Passage (off southeast Hispaniola), Dominican Republic, during April and May 2003. Objectives were 1) to characterize the horizontal and vertical movement of adults captured from the area by using pop-up satellite archival tags (PSATs); and 2) by means of larval sampling, to investigate whether fish were reproducing. Trolling from a sportfishing vessel yielded eight adult white marlin and one blue marlin (Makaira nigricans); PSAT tags were deployed on all but one of these individuals. The exception was a female white marlin that was unsuitable for tagging because of injury; the reproductive state of its ovaries was examined histologically. Seven of the PSATs reported data summaries for water depth, temperature, and light levels measured every minute for periods ranging from 28 to 40 days. Displacement of marlin from the location of release to the point of tag pop-up ranged from 3l.6 to 267.7 nautical miles (nmi) and a mean displacement was 3.4 nmi per day for white marlin. White and blue marlin mean daily displacements appeared constrained compared to the results of other marlin PSAT tagging studies. White marlin ovarian sections contained postovulatory follicles and final maturation-stage oocytes, which indicated recent and imminent spawning. Neuston tows (n=23) yielded 18 istiophorid larvae: eight were white marlin, four were blue marlin, and six could not be identified to species. We speculate that the constrained movement patterns of adults may be linked to reproductive activity for both marlin species, and, if true, these movement patterns may have several implications for management. Protection of the potentially important white marlin spawning ground near Mona Passage seems warranted, at least until further studies can be conducted on the temporal and spatial extent of reproduction and associated adult movement

    Exploring the use of environmental DNA (eDNA) to detect animal taxa in the Mesopelagic Zone

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Govindarajan, A. F., Francolini, R. D., Jech, J. M., Lavery, A. C., Llopiz, J. K., Wiebe, P. H., & Zhang, W. Exploring the use of environmental DNA (eDNA) to detect animal taxa in the Mesopelagic Zone. Frontiers in Ecology and Evolution, 9, (2021): 574877, https://doi.org/10.3389/fevo.2021.574877.Animal biodiversity in the ocean’s vast mesopelagic zone is relatively poorly studied due to technological and logistical challenges. Environmental DNA (eDNA) analyses show great promise for efficiently characterizing biodiversity and could provide new insight into the presence of mesopelagic species, including those that are missed by traditional net sampling. Here, we explore the utility of eDNA for identifying animal taxa. We describe the results from an August 2018 cruise in Slope Water off the northeast United States. Samples for eDNA analysis were collected using Niskin bottles during five CTD casts. Sampling depths along each cast were selected based on the presence of biomass as indicated by the shipboard Simrad EK60 echosounder. Metabarcoding of the 18S V9 gene region was used to assess taxonomic diversity. eDNA metabarcoding results were compared with those from net-collected (MOCNESS) plankton samples. We found that the MOCNESS sampling recovered more animal taxa, but the number of taxa detected per liter of water sampled was significantly higher in the eDNA samples. eDNA was especially useful for detecting delicate gelatinous animals which are undersampled by nets. We also detected eDNA changes in community composition with depth, but not with sample collection time (day vs. night). We provide recommendations for applying eDNA-based methods in the mesopelagic including the need for studies enabling interpretation of eDNA signals and improvement of barcode reference databases.This research was part of the Woods Hole Oceanographic Institution’s Ocean Twilight Zone Project, funded as part of The Audacious Project housed at TED. Funding for the NOAA Ship Henry B Bigelow was provided by NOAA’s Office of Marine and Aviation Operations (OMAO)

    The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

    PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity

    Get PDF
    PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN) cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity

    Expression of proadrenomedullin derived peptides in the mammalian pituitary: co-localization of follicle stimulating hormone and proadrenomedullin N-20 terminal peptide-like peptide in the same secretory granules of the gonadotropes

    Get PDF
    Expression of proadrenomedullin-derived peptides in the rat, cow and human pituitary was studied by a variety of techniques. Immunocytochemical detection showed a widespread expression of adrenomedullin peptide in the adenohypophysis and the neural lobe, with low expression in the intermediate pituitary. Proadrenomedullin N-20 terminal peptide (PAMP)-immunoreactivity was also present in the anterior pituitary but showed a more marked heterogeneous distribution, with cells going from very strong to negative immunostaining. Lower levels of PAMP were found in the neural lobe. Interestingly, the distribution of adrenomedullin and PAMP immunoreactivity in the anterior pituitary did not completely overlap. In the present study, we concentrated our efforts to determine which cell type of the adenohypophysis expresses PAMP. Paraffin and semithin serial sections immunostained for PAMP and the classical pituitary hormones revealed that a subpopulation of the gonadotropes expresses high levels of PAMP-immunoreactive material. Ultrastructural analysis clearly showed PAMP-immunoreactivity in the follicle stimulating hormone (FSH)-containing large secretory granules of the gonadotropes, suggesting simultaneous secretion of PAMP and FSH by this cell type. Three mouse adenohypophysis-derived cell lines (AtT20, GH3, and alphaT3-1 derived from corticotropes, lacto/somatotropes and gonadotropes, respectively) were also analysed and showed expression of both proadrenomedullin-derived peptides and their mRNA. Functional studies in these three cell lines showed that neither adrenomedullin nor PAMP was able to stimulate cAMP production in our experimental conditions. Taken together, our results support that proadrenomedullin derived peptides are expressed in the pituitary in cell-specific and not overlapping patterns, that could be explained by differences in postranslational processing. Our data showing costorage of PAMP and FSH in the same secretory granules open a way by which PAMP could be involved in the control of reproductive physiology in a coordinated manner with FSH

    ICOS costimulation at the tumor site in combination with CTLA-4 blockade therapy elicits strong tumor immunity

    Get PDF
    Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) blockade therapy is able to induce long-lasting antitumor responses in a fraction of cancer patients. Nonetheless, there is still room for improvement in the quest for new therapeutic combinations. ICOS costimulation has been underscored as a possible target to include with CTLA-4 blocking treatment. Herein, we describe an ICOS agonistic aptamer that potentiates T cell activation and induces stronger antitumor responses when locally injected at the tumor site in combination with anti-CTLA-4 antibody in different tumor models. Furthermore, ICOS agonistic aptamer was engineered as a bi-specific tumor-targeting aptamer to reach any disseminated tumor lesions after systemic injection. Treatment with the bi-specific aptamer in combination with CTLA-4 blockade showed strong antitumor immunity, even in a melanoma tumor model where CTLA-4 treatment alone did not display any significant therapeutic benefit. Thus, this work provides strong support for the development of combinatorial therapies involving anti-CTLA-4 blockade and ICOS agonist tumor-targeting agents

    Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses against Hepatocellular Carcinoma

    Get PDF
    Therapies based on immune checkpoint inhibitors (ICPI) have yielded promising albeit limited results in patients with hepatocellular carcinoma (HCC). Vaccines have been proposed as combination partners to enhance response rates to ICPI. Thus, we analyzed the combined effect of a vaccine based on the TLR4 ligand cold-inducible RNA binding protein (CIRP) plus ICPI. Mice were immunized with vaccines containing ovalbumin linked to CIRP (OVA-CIRP), with or without ICPI, and antigen-specific responses and therapeutic efficacy were tested in subcutaneous and orthotopic mouse models of liver cancer. OVA-CIRP elicited polyepitopic T-cell responses, which were further enhanced when combined with ICPI (anti-PD-1 and anti-CTLA-4). Combination of OVA-CIRP with ICPI enhanced ICPI-induced therapeutic responses when tested in subcutaneous and intrahepatic B16-OVA tumors, as well as in the orthotopic PM299L HCC model. This effect was associated with higher OVA-specific T-cell responses in the periphery, although many tumor-infiltrating lymphocytes still displayed an exhausted phenotype. Finally, a new vaccine containing human glypican-3 linked to CIRP (GPC3-CIRP) induced clear responses in humanized HLA-A2.01 transgenic mice, which increased upon combination with ICPI. Therefore, CIRP-based vaccines may generate anti-tumor immunity to enhance ICPI efficacy in HCC, although blockade of additional checkpoint molecules and immunosuppressive targets should be also considered

    Does fish larval dispersal differ between high and low latitudes?

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 280 (2013): 20130327, doi:10.1098/rspb.2013.0327.Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions, and evidence. We explore latitudinal differences in: 1) biological (e.g., species composition, spawning mode, pelagic larval duration (PLD)), 2) physical (e.g., water movement, habitat fragmentation), and 3) biophysical factors (primarily temperature, which could strongly affect development, swimming ability, or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature, and larval swimming, and each could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat, and geographic region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes, as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.TK was supported by the Norwegian Research Council through project MENUII #190286. JML was supported by ARC Discovery Grant DP110100695. JEC and RRW were supported by the Partnership for the Interdisciplinary Study of Coastal Oceans, funded by The David and Lucille Packard Foundation and the Gordon and Betty Moore Foundation.2014-03-2

    IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination

    Get PDF
    Vaccination induces immunostimulatory signals that are often accompanied by regulatory mechanisms such as IL-10, which control T-cell activation and inhibit vaccine-dependent antitumor therapeutic effect. Here we characterized IL- 10-producing cells in different tumor models treated with therapeutic vaccines. Although several cell subsets produced IL-10 irrespective of treatment, an early vaccine-dependent induction of IL-10 was detected in dendritic cells (DC). IL-10 production defined a DC population characterized by a poorly mature phenotype, lower expression of T-cell stimulating molecules and upregulation of PD-L1. These IL-10+ DC showed impaired in vitro T-cell stimulatory capacity, which was rescued by incubation with IL-10R and PD-L1-inhibiting antibodies. In vivo IL-10 blockade during vaccination decreased the proportion of IL-10+ DC and improved their maturation, without modifying PD-L1 expression. Similarly, PD-L1 blockade did not affect IL-10 expression. Interestingly, vaccination combined with simultaneous blockade of IL-10 and PD-L1 induced stronger immune responses, resulting in a higher therapeutic efficacy in tumor-bearing mice. These results show that vaccine-induced immunoregulatory IL-10+ DC impair priming of antitumor immunity, suggesting that therapeutic vaccination protocols may benefit from combined targeting of inhibitory molecules expressed by this DC subset

    Trophic Ecology of Atlantic Bluefin Tuna (Thunnus thynnus) Larvae from the Gulf of Mexico and NW Mediterranean Spawning Grounds: A Comparative Stable Isotope Study

    Get PDF
    The present study uses stable isotopes of nitrogen and carbon (ή15Nandή13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6–10mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest ή15N signatures, implying an elevated trophic position above the underlyingmicrozooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to ή15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages. These low ή15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for ή15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton— zooplankton—larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvaeVersión del editor4,411
    • 

    corecore