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Abstract
The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern 
sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important 
functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic 
ecosystem currently facing increased risks from climate change, fishing and energy 
development. We need a better understanding of the biology, population dynamics 
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1  | INTRODUC TION

Sand lances and sandeels (Ammodytes sp.) are considered a “quintes-
sential forage fish” in the Northern Hemisphere (Robards, Willson, 
Armstrong, & Piatt, 1999). Despite their ecological importance, most as-
pects of their ecology, population dynamics and vulnerability to current 
and future stressors in the Northwest Atlantic Ocean (NWA) are poorly 
understood. A few key historical studies of the biology, life history, dis-
tribution and ecology of Ammodytes exist in the region. However, re-
cent and projected environmental and ecological changes (Alexander 
et al., 2018; Saba et al., 2016; Thomas et al., 2017) are making some of 
this information obsolete as most of it was collected in the 1970s and 
1980s (Nelson & Ross, 1991; Scott, 1968, 1973; Winters, 1981, 1983). 
The NWA is a highly dynamic ecosystem currently facing myriad im-
pacts from climate change, fishing, aquaculture, oil and gas develop-
ment, as well as emerging and unknown risks from alternative energy 
sources (e.g., offshore wind energy facilities), nearshore and shoreline 
alterations from activities such as sand mining and coastline armour-
ing (Fisheries & Oceans Canada, 2009; Pershing et al., 2015; Saba et al., 
2016). Ammodytes may be vulnerable to changes brought about by any 
one or combination of these anthropogenic threats. Currently, we have 
an incomplete understanding of what drives high spatio-temporal vari-
ability in distribution and density of Ammodytes, which severely limits 
our ability to make predictions and assess risk. Although we can draw 
on experiences elsewhere (e.g., North Sea and Pacific Northwest) where 
the species and its habitats are well studied, the set of challenges to 
Ammodytes in the NWA region is unique. These knowledge gaps further 
impede the evaluation of cascading indirect impacts and trophic con-
sequences of Ammodytes variability on predators, co-occurring forage 
species and their sensitivity to disturbances in the greater community.
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and ecosystem role of Ammodytes to inform relevant management, climate adapta-
tion and conservation efforts. To meet this need, we synthesized available data on 
the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vul-
nerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 
regional predators including 45 species of fishes, two squids, 16 seabirds and nine 
marine mammals were found to consume Ammodytes. Priority research needs identi-
fied during this effort include basic information on the patterns and drivers in abun-
dance and distribution of Ammodytes, improved assessments of reproductive biology 
schedules and investigations of regional sensitivity and resilience to climate change, 
fishing and habitat disturbance. Food web studies are also needed to evaluate trophic 
linkages and to assess the consequences of inconsistent zooplankton prey and preda-
tor fields on energy flow within the NWA ecosystem. Synthesis results represent the 
first comprehensive assessment of Ammodytes in the NWA and are intended to in-
form new research and support regional ecosystem-based management approaches.
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The objective of this synthesis is to summarize the current state 
of knowledge and identify information gaps, about the two primary 
species, A. dubius and A. americanus (hereafter collectively referred 
to as NWA Ammodytes) throughout their range in continental shelf 
waters of the NWA from North Carolina (USA) to Greenland. A 
range of basic and applied questions related to the life history, tro-
phic ecology and vulnerability to growing anthropogenic threats 
were identified by a diverse working group of scientists, natural re-
source managers and conservation practitioners from state, federal, 
academic and non-governmental organizations with interests and 
expertise in NWA Ammodytes ecology or their predators. Although 
previous literature syntheses have covered Ammodytes on a global 
scale (Robards, Willson, et al., 1999) and in the Northeast Atlantic 
Ocean (Green, 2017), to the best of our knowledge this is the first 
comprehensive assessment in the NWA region. Results are intended 
to inform new research, and to help guide conservation and man-
agement efforts by regional Fishery Management Councils, regula-
tory agencies, fishing communities, conservation organizations and 
coastal development groups, all of whom share responsibilities and 
interests in NWA Ammodytes and their predators.

2  | LIFE HISTORY

The family Ammodytidae contains 33 described species globally, 
with eight in the genus Ammodytes (Fricke, Eschmeyer, & Van Der 
Laan, 2019; Orr et al., 2015). The genus Ammodytes is composed of 
zooplanktivorous fishes that span coastal temperate to polar wa-
ters in the Northern Hemisphere. Their occurrence depends on the 
presence of coarse-grained sand from which they emerge on diel 
and seasonal cycles to feed in the water column (Auster & Stewart, 
1986; Holland, Greenstreet, Gibb, Fraser, & Robertson, 2005; Reay, 
1970; Robards, Piatt, & Rose, 1999; Scott, 1968; Wright, Jensen, & 
Tuck, 2000).

There are two phenotypically similar, congeneric NWA species: 
the American sand lance Ammodytes americanus (DeKay 1842) and 
the Northern sand lance A. dubius (Reinhardt 1837). Their distinc-
tion is primarily based on differences in distribution, maximum size 
and a few meristic (i.e., countable) traits. A. americanus primarily oc-
curs in shallow nearshore habitats (<20 m, though often <2 m) from 
Delaware, USA, to the Labrador coast, Canada (Auster & Stewart, 
1986; Nizinski, 2002; Nizinski, Collette, & Washington, 1990). In 
contrast, A. dubius tends to occur in deeper, more offshore waters 
(2–100 m, though often > 20 m) between Cape Hatteras, USA, and 
Greenland (Nizinski et al., 1990). While the smaller A. americanus 
rarely exceeds 20 cm in standard length, A. dubius appears to be 
deeper-bodied and can grow to over 30 cm (Nizinski et al., 1990). In 
addition, A. dubius generally shows higher meristic counts of certain 
morphological features than A. americanus, with a greater number 
of plicae (folds of the skin around the lateral musculature) and ver-
tebrae (Nizinski et al., 1990; Scott, 1968). The meristic separation 
between the two species appears to increase with latitude, thereby 
aiding identification in the more northern locations of their range.

The subtle differences between A. dubius and A. americanus have 
likely been confused in the literature. For example, Meyer, Cooper, 
and Langton (1979) referred to Ammodytes on Stellwagen Bank as 
A. americanus, yet the offshore specimens (and probably nearly all 
those observed in the study) were A. dubius owing to the depth of 
the bank and its distance from shore. The difficulty in distinguish-
ing the species morphologically has likely also confounded genetic 
differentiation between the two species. For example, previous 
studies suggest that the mitochondrial genomes of A. dubius and A. 
americanus are nearly identical, and standard DNA barcoding tech-
niques using the cytochrome oxidase 1 (COI) gene cannot be used 
to differentiate between them (Horne, Mcbride, Lighten, Bradbury, 
& Bentzen, 2016; McCusker, Denti, Van Guelpen, Kenchington, & 
Bentzen, 2013; Orr et al., 2015); however, morphological characters 
used to identify these specimens were not provided. In contrast, COI 
sequence data for Ammodytes collected from waters along the east 
coast of the USA grouped into two distinct clusters (D. Richardson, 
personal observation). One grouping matched sequences currently 
reported as A. dubius and A. americanus in public databases (GenBank 
and Boldsystems). The second group of sequences differed by ~4% 
from the first, was a close match to A. hexapterus (Ammodytidae) 
from the Pacific and Arctic, and came from specimens with the mer-
istics of A. americanus. These results suggest that it is possible to 
genetically differentiate these two species.

2.1 | Growth and reproduction

Little is known about the biology and life history of A. dubius and A. 
americanus in the NWA. A few studies were conducted in the 1970s 
and 1980s to assess age distributions, growth rates and reproduction, 
but may now be out of date given the rapid environmental changes 
occurring in the region during recent decades (Friedland et al., 2018; 
Pershing et al., 2015; Thomas et al., 2017). Indeed, Ammodytes 
populations that are in close proximity (<60 km) to each other but 
experience different ocean temperature regimes can exhibit mark-
edly different age compositions or growth rates (Robards, Rose, & 
Piatt, 2002). Growth rates can also vary markedly among just a few 
years with strong temperature fluctuations (von Biela et al., 2019). 
During the 1980s, NWA Ammodytes populations in Northeast U.S. 
continental shelf waters were generally ≤5 years of age, primarily 
age 1–3 (Nelson & Ross, 1991). More northerly populations, includ-
ing those on the Scotian Shelf, were found to potentially live longer, 
with reported maximum ages of 8 and 12 years for A. dubius and 
A. americanus, respectively, during the late 1960s–1970s (Brêthes, 
Saint-Pierre, & Desrosiers, 1992; Winters, 1981). Age at maturity 
may also differ between northern and southern populations of A. 
dubius, with populations along the Northeast USA reaching 50% ma-
turity at age 2 and populations in the Grand Banks subregion reach-
ing maturity at age 3 (Nelson & Ross, 1991; Winters, 1983). NWA 
Ammodytes from the Grand Banks demonstrated faster growth rates 
than those from Georges Bank and further south. This suggests a 
reduction in growth rate with decreasing latitude consistent with 
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counter-gradient latitudinal growth (Baumann & Conover, 2011), 
although the exact mechanisms behind this pattern are not under-
stood (Nelson & Ross, 1991; Winters, 1983).

Both species of Ammodytes in the NWA are gonochoristic (i.e., 
reproductively distinct between sexes) and exhibit 1:1 sex ratios 
(Nelson & Ross, 1991). The diameter of oocytes is unimodal for 
A. americanus, suggesting once-a-year spawning for this species 
(Westin, Abernethy, Meller, & Rogers, 1979), which is consistent 
with recent observations for A. dubius from Stellwagen Bank (H. 
Baumann, personal observation). Both species spawn in fall and 
winter along the Northeast USA: A. dubius and A. americanus de-
velop ripe gonads in the fall, and larvae are prevalent in the water 
column throughout the winter and spring (Dalley & Winters, 1987; 
Nelson & Ross, 1991; Potter & Lough, 1987; Walsh, Richardson, 
Marancik, & Hare, 2015). Near Greenland, the timing of spawning 
for A. dubius occurs earlier in the year, likely due to the colder tem-
peratures and a truncated foraging season in this northern region 
(Danielsen, Hedeholm, & Grønkjær, 2016). The duration of spawn-
ing times of A. americanus and A. dubius is unknown. The historical 
literature suggests a long spawning season ranging from December 
through May on the Grand Banks (Dalley & Winters, 1987); how-
ever, a recent analysis of A. dubius captured on Stellwagen Bank in 
2016 and 2017 indicates that this species has a truncated spawn-
ing period, lasting ~1–2 weeks in late November (Murray, Wiley, & 
Baumann, 2019).

2.2 | Early life history

Fertilized eggs of NWA Ammodytes are demersal and adhesive, and 
are thought to develop on sandy substrates over the course of a 
two month period (Smigielski, Halavik, Buckley, Drew, & Laurence, 
1984). Time to hatch in the wild has been observed in a single 
study in the Gulf of Alaska at 67 days of total incubation (Robards, 
Piatt, et al., 1999). Laboratory studies revealed that development is 
highly temperature-dependent for A. americanus and the European 
congener A. marinus, which can result in interannual and regional 
variability in hatch phenology for these species (Régnier, Gibb, & 
Wright, 2018; Smigielski et al., 1984). Yolk-sac larvae begin to ap-
pear in ichthyoplankton tows in February in Nova Scotia and in 
December on Georges Bank, Nantucket Shoals, and Stellwagen 
Bank, though peak hatching is in January for these more southerly 
regions (Dalley & Winters, 1987; Potter & Lough, 1987; J. Llopiz, 
unpublished data). Larvae range from 4 to 7 mm at hatch, and A. 
americanus larvae in Long Island Sound consume phytoplankton 
at first feeding before shifting to copepod species such as Temora 
sp. and Acartia sp. throughout their early life history (Auster & 
Stewart, 1986; Monteleone & Peterson, 1986). In the laboratory, 
first feeding in A. americanus can occur up to 16 days post-hatch, 
indicating they may be resilient to short-term delays in accessing 
food during the first few weeks of life (Buckley et al., 1984). NWA 
Ammodytes larvae live in the water column for the first 3–4 months 
until reaching sizes of 35–50 mm, at which point they begin to 

settle into demersal habitats (Auster & Stewart, 1986; Scott, 1973). 
Historically, settlement has occurred in May along the Northeast 
USA and June to July in Nova Scotia (Potter & Lough, 1987; Scott, 
1973); however, observed shifts of later winter larval phenology 
during recent decades in the NWA (Walsh et al., 2015) could affect 
settlement timing.

2.3 | Diet and key prey

The adult diet of Ammodytes in the NWA is poorly known, with 
most existing studies focusing on A. dubius (Danielsen et al., 2016; 
Meyer et al., 1979) and the last comprehensive foraging study within 
Northeast U.S. shelf waters conducted in the late 1970s (Bowman, 
2000). Where diets have been characterized, large and energy-rich 
copepods, primarily members of the genus Calanus, are promi-
nent and thought to affect recruitment success and productivity 
(Bowman, 2000; Danielsen etal., 2016; van Deurs, van Hal, Tomczak, 
Jónasdóttir, & Dolmer, 2009; van Deurs, Jørgensen, & Fiksen, 2015; 
Lindegren et al., 2018; Régnier et al., 2018; Scott, 1973). Of eco-
logical significance, in areas where NWA Ammodytes are particularly 
abundant, such as Georges Bank, they can exhibit top-down effects 
on zooplankton, consuming significant proportions of total annual 
production (Gilman, 1994).

Calanus species, notably C. finmarchicus (Calanidae), were 
historically abundant in the deep waters (>75 m depth) of the 
Gulf of Maine (Bigelow, 1926; Durbin, Gilman, Campbell, & 
Durbin, 1995; Runge & Jones, 2012), where densities have been 
as high or higher than anywhere across the NWA, even though 
this area represents the southernmost margin of their subarctic 
range (Melle et al., 2014). C. finmarchicus exhibits high interan-
nual and seasonal variability in the Gulf of Maine (Record et al., 
2019). Historically, older stages were transported from the Gulf 
of St. Lawrence during summer and fall into the eastern Gulf of 
Maine, with contributions by the subsurface Labrador Subarctic 
Slope Water (Head, Harris, & Petrie, 1999; MERCINA Working 
Group et al., 2001; Record et al., 2019) in the Nova Scotia Current 
(Appendix S1: Supplemental 1) (Kane, 2007; Pershing et al., 2005). 
However, shifts in seasonal oceanographic conditions, circulation 
and the phenology of lower trophic level species are affecting es-
tablished patterns in regional timing and availability of resources 
(see Sections 4.1 and 4.2; Staudinger et al., 2019; Thomas et al., 
2017). Production from the Maine Coastal Current also supplied 
predators, including NWA Ammodytes, in the western Gulf of 
Maine during summer and fall with lipid-rich older stages of C. fin-
marchicus (Ji et al., 2017; Runge et al., 2015). In Greenland waters, 
late-stage Calanus have been found to constitute the majority of 
the summer diet of A. dubius (Danielsen et al., 2016). Smaller co-
pepods, such as Centropages typicus (Centropagidae), Temora lon-
gicornis (Temoridae), Oithona sp. (Oithonidae) and Pseudocalanus 
sp. (Clausocalanidae), are also known prey of NWA Ammodytes, 
particularly A. americanus, likely due to overlapping occurrence in 
coastal habitats (Bowman, 2000).
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2.4 | Influences on abundance and distribution

In European waters, environmental variables (e.g., water velocity 
and bottom temperature) as well as top-down and bottom-up forc-
ings have been associated with Ammodytes (A. marinus, A. tobianus 
and Hyperoplus lanceolatus, Ammodytidae) distribution and abun-
dance (Frederiksen, Edwards, Richardson, Halliday, & Wanless, 
2006; van der Kooij, Scott, & Mackinson, 2008; Tien et al., 2017). 
Bottom-up effects were postulated where significant correlations 
existed between A. marinus recruitment in the North Sea and the 
production of Calanus eggs (van Deurs et al., 2015; Régnier et al., 
2018). Intraguild trophic relationships among forage fishes may 
also contribute to oscillations in relative abundances (Irigoien & 
de Roos, 2011). Such dynamics have been suggested in the NWA 
region where Atlantic herring (Clupea harengus, Clupeidae) and 
Atlantic mackerel (Scomber scombrus, Scombridae) abundances 
were observed to oscillate out of phase with NWA Ammodytes dur-
ing 1969–2010 (Fogarty, Sissenwine, & Cohen, 1991; Richardson, 
Palmer, & Smith, 2014; Sherman et al., 1981) as well as for capelin 
(Mallotus villosus, Osmeridae) and A. hexapterus in Alaskan waters 
(Sydeman et al., 2017). This out-of-phase oscillation is noteworthy 
given its consistency over such a long time span. Because NWA 
Ammodytes, Atlantic mackerel and Atlantic herring diets differ ap-
preciably throughout much of the region, competition for prey 
is unlikely to be the primary driver of this oscillation (Bowman, 
2000; Suca et al., 2018). However, when diet overlap is high among 
zooplanktivorous predators, the prey base can be reduced to the 
point where all forage fish growth and survival are compromised 
(Purcell & Sturdevant, 2001). Top-down control is more likely as 
both Atlantic herring and mackerel are known to prey on larval 
NWA Ammodytes (Fogarty et al., 1991; Suca et al., 2018; also see 
Section 3). When Atlantic herring and mackerel are at low popu-
lation levels, NWA Ammodytes can be released from predation, 
resulting in a competitive advantage, and vice versa (Polis, Myers, 
& Holt, 1989). Further, intercohort cannibalism (adult Ammodytes 
consuming larvae) can occur in regions and years with low abun-
dances of alternative prey (Eigaard et al., 2014, North Sea). Because 
generalist predators typically consume the most abundant prey 
available, out of phase cycles of NWA Ammodytes with other for-
age fishes in the region could have important trophic effects on 
higher-level predators. Indeed, in past decades predator diets (e.g., 
Atlantic cod) have mirrored trends in oscillating abundances of 
NWA Ammodytes and Atlantic herring (Fogarty et al., 1991; Nelson 
& Ross, 1991; Richardson et al., 2014). Environmental drivers and 
fishing pressure likely influence these complicated species interac-
tions directly and indirectly (Figure 1).

The availability of NWA Ammodytes appears to be highly patchy 
across temporal and spatial scales and differs substantially from 
that of other forage fishes, in part due to habitat requirements for 
coarse-grained sandy bottom substrates that allow them to bury and 
hide from predators (Nizinski, 2002). In comparison, Atlantic herring 
make broad movements throughout the year and are less confined 
to a single type of substratum, making them more widely distributed 

across continental shelf habitats, except during the fall spawning 
season (Jech & Stroman, 2012; Munroe, 2002). Dependency on 
sandy substrates leads to high densities of NWA Ammodytes in re-
gions such as the northwest and southwest corners of Stellwagen 
Bank in the Gulf of Maine. High densities of NWA Ammodytes in a 
predictable location attracts (Hazen et al., 2009; Richardson et al., 
2014) and is likely advantageous to predators, both resident and 
those that move to occupy such habitats during times of peak food 
abundance. Further, changes in higher-level predator abundance can 
create strong top-down pressures that control NWA Ammodytes 
dynamics in areas where they are concentrated. Predatory release 
due to overfishing of Atlantic cod (Gadus morhua) and other piscivo-
rous fishes was one explanation for observed population increases 
in NWA Ammodytes in Canadian waters from 1990 to 2010 (Frank 
et al., 2013; Frank, Petrie, Fisher, & Leggett, 2011); however, this re-
mains an open question as changes in the vertical distribution of pe-
lagic forage fishes provides an alternative explanation, and gear bias 
may have confounded interpretation of demographic trends (Jech & 
McQuinn, 2016; McQuinn, 2009).

Gathering reliable data on NWA Ammodytes abundance, dis-
tribution and population dynamics in the region has been difficult. 
In addition to the absence of fishery-dependent data, Ammodytes 
are not caught consistently or detected readily in state and federal 
bottom trawl survey methods due to the mesh sizes used (Miller 
et al., 2010; Politis, Galbraith, Kostovick, & Brown, 2014). Their nar-
row, anguilliform morphology and burrowing behaviour also make 
Ammodytes especially difficult to capture with routine bottom 
trawl gear. NWA Ammodytes are captured during ichthyoplankton 
surveys (Figure 2) and incidentally in bottom trawl gear (Figure 3), 
and thus, some insights can be gained into population trends from 
similar gear type collections that go beyond presence/absence. For 
example, ichthyoplankton collections were used to estimate spawn-
ing stock biomass between 1974 and 1980 at 1 million metric tons, 
similar to that of Atlantic herring abundances in peak years (Morse, 
1982). Richardson et al. (2014) assessed coherence in interannual 
NWA Ammodytes abundance anomalies across ichthyoplankton, 
bottom trawl and diet surveys as an index to ameliorate the biases 
in determining population trends based on a single survey (Figure 1). 
Anomalies in the spring National Marine Fisheries Service (NMFS) 
Northeast Fisheries Science Center (NEFSC) Bottom Trawl Survey 
collections closely track the trends found by the index.

A common pattern among members of the genus Ammodytes 
is a dormancy period lasting up to a few months. For most species 
within the genus, dormancy occurs in fall and winter, centred around 
spawning for A. personatus in the Northeast Pacific, and occur-
ring post-spawning for A. marinus and A. tobianus in the Northeast 
Atlantic (Winslade 1974; Ciannelli 1997; Van Deurs, Christensen, 
Frisk, & Mosegaard, 2010; van Deurs, Hartvig, & Steffensen, 2011. 
Ammodytes japonicus (Ammodytidae) in the Northwest Pacific, how-
ever, undergoes aestivation in the late summer through fall prior 
to spawning, indicating that dormancy strategies are variable ac-
cording to species and climate (Inoue, 1967; Kuzuhara et al., 2019; 
Sekiguchi, 1977). A winter dormancy period has been suggested for 
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F I G U R E  1   Diagram of top-down and bottom-up controls on Northwest Atlantic (NWA) Ammodytes. Panels from bottom to top: 
Environment—Average monthly temperature anomaly (°C) for the Gulf of Maine calculated from NOAA’s Extended Reconstructed Sea 
Surface Temperature V5. Prey—Copepod size index data (small copepod-large copepod; average across Northeast U.S. Shelf) are adapted 
from Perretti et al. (2017). Intraguild Competition/Predation—Mean standardized anomaly in NWA Ammodytes and Atlantic herring indices 
are adapted from Richardson et al. (2014). Predation—Cod diet data represent per cent herring and NWA Ammodytes by mass in the diet 
of cod (with 95% confidence interval) collected by the Northeast Fisheries Science Center Food Web Dynamics Program. Policy and 
Management—historical management decisions impacting NWA Ammodytes and other forage fishes
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A. dubius, yet no rigorous study of dormancy timing currently exists 
in the NWA region (Gilman, 1994). In each case, vigorous feeding 
prior to dormancy appears to contribute to maturation and sur-
vival, thus making this genus potentially vulnerable to changes in 
the spatio-temporal dynamics of their zooplankton prey (Kuzuhara 
et al., 2019; Nishikawa, Nakamura, Okamoto, & Ueda, 2019; Van 
Deurs, Christensen, Frisk, & Mosegaard, 2010; van Deurs, Hartvig, 
& Steffensen, 2011; von Biela et al., 2019;).

3  | ROLE A S PRE Y

Although Ammodytes are recognized as important forage fish, a 
comprehensive evaluation of the extent and variation of their role 
as prey in the diets of higher trophic levels has not been completed 
for the NWA region. To address this need, we synthesized available 
literature and diet datasets associated with three major predator 
groups: fishes, seabirds and marine mammals. Using Web of Science 
and Academic Search Premier, the scientific and common names of 
known predator species were searched in combination with “diet” 
and “prey.” In addition, we queried “Ammodytes,” “Ammodytes ameri-
canus” and “Ammodytes dubius,” on their own and in combination 
with “prey.” Studies were reviewed for relevance (i.e., geographical 
scope), and dietary metrics describing consumption of Ammodytes 
(e.g., % mass) were compiled. In addition, a query of the long-term 
NMFS/NEFSC Food Web Dynamics Program database (Smith & 
Link, 2010; https://inport.nmfs.noaa.gov/inpor t/hiera rchy/1368) 
yielded detailed information on 40 predatory fishes. Data were 
identified by searching for all records where “Ammodytes” was iden-
tified as a prey item in a predator stomach. Predation was summa-
rized as the relative proportion with 95% confidence intervals (CI) 

of Ammodytes (by % mass in grams) consumed by each species by 
season, region and decade (Table 1; Appendix S1: Supplemental 
2–4). Summary statistics are based on a minimum of 205 stomach 
samples for each predator and factor. Dietary studies conducted at 
seabird colonies managed by the U.S. Fish and Wildlife Service, the 
National Audubon Society Seabird Restoration Program, state agen-
cies and non-governmental organizations throughout the Northeast 
USA and Gulf of Maine were also compiled and summarized based 
on the frequency of occurrence (% FO) or per cent mass (% M) in the 
provisioned chick diets of each seabird species at a given location 
(Appendix S1: Supplemental 8). No routine diet datasets were found 
for marine mammals, and assessments were purely based on the re-
sults of the existing published literature.

In total, 45 species of fishes, 2 squids, 16 seabirds and 9 marine 
mammals were reported to consume Ammodytes in the NWA region. 
The methodology for assessing predator diets varied from direct 
observations of stomach contents to visual assessments of prey de-
liveries and observations of surface foraging behaviours (Figure 4). 
Fish predator data yielded the most quantitative assessments of diet 
followed by seabird predators. In contrast, information on marine 
mammal diets was often based on opportunistic assessments and 
largely qualitative.

3.1 | Importance to fishes and squids

Fish and squid predators captured in the NEFSC survey between 
1973 and 2015 and containing notable amounts (≥5% M) of NWA 
Ammodytes in their stomach contents included Atlantic cod, long-
horn sculpin (Myoxocephalus octodecemspinosus, Cottidae), winter 
skate (Leucoraja ocellata, Rajidae), alewife (Alosa pseudoharengus, 

F I G U R E  2   Map showing the 
average spatial distribution of larval 
Northwest Atlantic (NWA) Ammodytes, 
with bathymetry lines, between 1977 
and 2018. NWA Ammodytes are winter 
spawners, and data coincide with the 
months when larvae are present in the 
water column and before they attain body 
sizes (typically in spring) whereby they 
are capable of evading survey gear. Note 
that distribution changes annually. Data 
were collected by the Northeast Fisheries 
Science Center Ecosystem Monitoring 
(EcoMon) sampling programme and were 
provided courtesy of David Richardson

https://inport.nmfs.noaa.gov/inport/hierarchy/1368
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Clupeidae), haddock (Melanogrammus aeglefinus, Gadidae), win-
dowpane flounder (Scophthalmus aquosus, Scophthalmidae), 
striped searobin (Prionotus evolans, Triglidae) and northern king-
fish (Menticirrhus saxatilis, Sciaenidae) (Table 1). However, the 
importance of NWA Ammodytes as prey to these and other preda-
tors varied substantially with season, geography, decade and 
ontogeny.

On a seasonal basis, NWA Ammodytes were consumed by the 
greatest diversity of fish species (Npredators = 33) in moderate (5%–10% 
M) to high (≥10% M) proportions during fall (September–December) 
(Figure 5; Appendix S1: Supplemental 2). Winter skate, striped bass 

(Morone saxatilis, Moronidae), clearnose skate (Raja eglanteria, Rajidae), 
haddock, windowpane and summer flounder (Paralichthys dentatus, 
Paralichthyidae) were among the top consumers of NWA Ammodytes 
during this season. A similar diversity of fish species (Npredators = 28) for-
aged on NWA Ammodytes in spring; however, most contained low pro-
portions (<5% M) in their diets, with the exception of alewife, longhorn 
sculpin, Atlantic cod, winter skate and pollock (Pollachius virens, Gadidae). 
Survey effort was relatively low during the winter (January–March) and 
summer (June–August) seasons compared to spring and fall and likely in-
fluenced results for these periods (Npredators = 11 in both seasons). During 
winter, NWA Ammodytes was only found in trace amounts (<2% M) 

F I G U R E  3   Spatial distribution of 
Northwest Atlantic Ammodytes during 
A) spring and B) fall caught during the 
Massachusetts Department of Marine 
Fisheries resource trawl survey. Data 
reflect occurrences between 1978 and 
2016 on a relative scale ranging from 
absent (light colour) to very high numbers 
(dark colour). Maps courtesy of Amanda 
Davis and the Massachusetts Wildlife 
Climate Action Tool (For interactive data 
go to: climateactiontool.org)
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across predator diets, suggesting lower predation pressure, or reduced 
availability, possibly a result of winter dormancy in NWA Ammodytes. 
In contrast, haddock, windowpane flounder and winter skate consumed 
very high amounts (>31% M) of NWA Ammodytes during summer.

Geographically, NWA Ammodytes was consumed by the greatest di-
versity of fishes in Southern New England (Npredators = 28) waters. A few 
notable predators were seasonal migrants to the region (striped bass 
and bluefish (Pomatomus saltatrix, Pomatomidae)). Most fish diets from 

TA B L E  1   A summary of all fish predators caught by the Northeast Fisheries Science Center on the Northeast Continental Shelf from 
1973 to 2015 and the percentage by mass (% Mass) and 95% Confidence Intervals (CI) of their overall diets found to contain Northwest 
Atlantic Ammodytes

Common name Scientific name % Mass CI
Mean predator 
length (cm)

Range 
(cm)

Mean prey 
length (mm) Range (mm)

Alewife Alosa pseudoharengus 18.32 3.93 19.3 18–23 38.8 28–50

American shad Alosa sapidissima 0.04 0.00 – – – –

Atlantic cod Gadus morhua 17.01 0.19 60.4 17–130 130.7 10–270

Atlantic croaker Micropogonias undulatus 0.15 0.01 – – – –

Atlantic halibut Hippoglossus hippoglossus 0.45 0.04 69.0 49–87 148.9 80–215

Atlantic herring Clupea harengus 0.51 0.01 22.4 12–36 33.8 10–120

Atlantic mackerel Scomber scombrus 1.46 0.04 25.7 20–40 55.3 11–158

Barndoor skate Dipturus laevis 0.38 0.01 65.3 56–85 88.3 73–118

Black sea bass Centropristis striata 0.94 0.02 46.4 24–51 88.7 80–100

Bluefish Pomatomus saltatrix 4.66 0.08 58.5 18–85 111.8 11–200

Clearnose skate Raja eglanteria 4.67 0.17 57.8 42–73 86.3 28–170

Fourspot flounder Paralichthys oblongus 1.56 0.01 31.2 22–43 95.8 45–150

Goosefish Lophius americanus 0.45 0.01 44.4 12–90 152.5 60–275

Haddock Melanogrammus aeglefinus 7.25 0.18 49.9 18–80 102.5 40–180

Little skate Leucoraja erinacea 0.92 0.00 44.0 28–53 78.3 12–215

Longhorn sculpin Myoxocephalus 
octodecemspinosus

22.06 0.23 28.5 15–36 130.8 19–195

Northern kingfish Menticirrhus saxatilis 5.34 0.65 35.0 35–35 107.7 95–118

Northern searobin Prionotus carolinus 1.61 0.05 26.0 23–29 97.5 95–100

Ocean pout Macrozoarces americanus <0.01 0.00 45.0 45–45 126.0 126–126

Pollock Pollachius virens 3.70 0.09 55.8 23–106 139.8 40–230

Red hake Urophycis chuss 0.65 0.00 37.7 19–54 104.3 10–209

Rosette skate Leucoraja garmani 0.15 0.01 – – – –

Scup Stenotomus chrysops 0.06 0.00 28.3 20–33 104.0 76–115

Silver hake Merluccius bilinearis 0.88 0.01 32.4 9–53 117.1 11–250

Sea raven Hemitripterus americanus 2.10 0.02 26.0 14–40 124.6 25–230

Smooth dogfish Mustelus canis 0.22 0.00 96.5 55–122 105.5 10–180

Smooth skate Malacoraja senta 0.04 0.00 – – – –

Spiny dogfish Squalus acanthias 2.31 0.03 76.9 23–105 126.6 12–388

Spotted hake Urophycis regia 0.61 0.01 20.9 10–31 92.9 25–195

Striped bass Morone saxatilis 3.34 0.30 58.1 32–81 129.8 100–195

Striped searobin Prionotus evolans 5.51 0.36 31.5 25–37 136.3 120–160

Summer flounder Paralichthys dentatus 3.45 0.02 41.2 28–62 115.9 11–260

Thorny skate Amblyraja radiata 1.40 0.03 65.5 21–81 123.7 74–180

Weakfish Cynoscion regalis 1.00 0.02 37.3 23–77 109.7 70–152

White hake Urophycis tenuis 0.10 0.00 31.0 22–51 76.5 16–140

Windowpane flounder Scophthalmus aquosus 6.20 0.07 29.4 17–38 89.6 11–190

Winter flounder Pseudopleuronectes americanus 0.03 0.00 30.7 16–38 94.7 54–120

Winter skate Leucoraja ocellata 19.80 0.12 77.8 22–106 125.0 10–380

Yellowtail flounder Limanda ferruginea 4.54 0.09 31.0 20–41 78.3 40–135
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the Mid-Atlantic Bight (Npredators = 23) contained relatively low (<5% M) 
amounts of NWA Ammodytes, except for silver hake (Merluccius bilinearis, 
Merlucciidae) and winter skate (Figure 6; Appendix S1: Supplemental 3). 
In the northern regions of Georges Bank (Npredators = 25) and the Gulf 
of Maine (Npredators = 20), NWA Ammodytes were consumed in relatively 
higher proportions than in other regions. For example, the diets of win-
ter skate on Georges Bank, as well as longhorn sculpin and Atlantic cod 

in the Gulf of Maine, contained 25%–47% M of NWA Ammodytes. Few 
predators (N = 7) consumed NWA Ammodytes on the Scotian Shelf and 
only in trace amounts (<2% M).

Seventeen species of fish predators were found to consume 
NWA Ammodytes during all five decadal periods sampled (Figure 7; 
Appendix S1: Supplemental 4). During the 1970s, 1980s and 1990s, 
fewer species consumed NWA Ammodytes overall (22–23 predator 

F I G U R E  4   Proportion of Northwest Atlantic Ammodytes in seabird, fish, squid and marine mammals diets based on the results of a 
systematic literature review. Species within each taxonomic group are generally ordered from highest to lowest importance of Ammodytes 
sp. in their respective diets. Diet metrics are indicated by symbols, and study locations are indicated by colour. Exact dietary values and 
other study details can be found for fishes and squids in Appendix S1: Supplemental Table 6, for seabirds in Appendix S1: Supplemental 
Table 7, and for marine mammals in Appendix S1: Supplemental Table 9
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species) compared to more recent decades (N2000s = 36 predators; 
N2010s = 26 predators). Fish diets during the 1970s and 1980s con-
tained greater proportions of NWA Ammodytes compared to the 
1990s and 2000s, before increasing again during the most recent 
decade (2010s). A noticeable drop in predation was evident during 
the 1990s, when NWA Ammodytes was only found in trace amounts 
(≤2% M) across all predator diets, except for winter skate, whose diet 
contained low to moderate amounts (<10% M) compared to all other 
time periods (22%–45% M). These results are consistent with previous 
studies that have identified the 1990s (and the 1960s) as a time period 
of low NWA Ammodytes availability (Figure 1; Richardson et al., 2014).

NWA Ammodytes have gone through periods of importance as 
prey to other forage fishes including: alewife in the 1980s during 
spring; and to a lesser extent, American shad during the 2000s in 
spring in the Gulf of Maine; Atlantic herring from the 1980s to pres-
ent during spring primarily in the Georges Bank region; and scup 
(Stenotomus chrysops, Sparidae) in Southern New England during fall 
in the 1970s. Clearnose (R. eglanteria, Rajidae), barndoor (Dipturus 
laevis, Rajidae) and rosette (L. garmani, Rajidae) skates, as well as 
striped and northern (P. carolinus, Triglidae) sea robins, were not doc-
umented as predators of NWA Ammodytes prior to the 2000s in the 
NMFS trawl survey, but were found thereafter to consume them in 

F I G U R E  5   Per cent by mass of Northwest Atlantic Ammodytes in fish diets by season. Data were collected by the Northeast Fisheries 
Science Center on the Northeast Continental Shelf from 1973 to 2015
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low to moderate amounts (<10% M of total diets), particularly during 
spring and fall across multiple regions. However, this may have been 
a sampling artefact of the survey as sampling intensity has changed 
over time due to commercial and ecological interest in certain spe-
cies (Smith & Link, 2010).

Predator-prey body-size data were available for 35 fishes in the 
NMFS trawl series (Table 1). The mean size ± SD of NWA Ammodytes 
consumed by all predators across all years was 117.3 ± 46.7 mm. 
Based on size-at-age estimates from Monteleone and Peterson 
(1986) and Nelson and Ross (1991), the majority of NWA Ammodytes 

consumed across the region were post-metamorphosis young-of-
the-year (YOY) and year-1 and year-2 fish. Few predators consumed 
NWA Ammodytes > 180 mm TL. The smallest NWA Ammodytes on 
average were found in the diets of Atlantic herring, alewife, Atlantic 
mackerel, white hake (Urophycis tenuis, Phycidae), yellowtail flounder 
(Limanda ferruginea, Pleuronectidae) and several species of skates 
(Table 1). Atlantic herring and alewife consumed mostly larval and 
young-of-the-year NWA Ammodytes, but early life stages of NWA 
Ammodytes were found in the diets of most other fishes, except 
ocean pout (Macrozoarces americanus, Zoarcidae), striped bass and 

F I G U R E  6   Per cent by mass of Northwest Atlantic Ammodytes in fish diets by geographical area. GB, Georges Bank; GoM, Gulf of Maine; 
MAB, Mid-Atlantic Bight; SNE, Southern New England; and ScS, Scotian Shelf. Data were collected by the Northeast Fisheries Science 
Center on the Northeast Continental Shelf from 1973 to 2015
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striped searobin, which consumed individuals ≥100 mm. Goosefish 
(Lophius americanus, Lophiidae), Atlantic halibut (Hippoglossus hippo-
glossus, Pleuronectidae), pollock, striped searobin, longhorn sculpin 
and Atlantic cod consumed the largest NWA Ammodytes on aver-
age (≥130 mm TL). Across all regions, the smallest individuals were 
consumed during summer, intermediate sizes were consumed in fall, 
and slightly larger and equivalent sized NWA Ammodytes were con-
sumed in winter and spring (Table 2). Size distributions of larger NWA 
Ammodytes were related to cohort growth rates and availability, pos-
sibly due to changes in activity levels (e.g., spawning aggregations). 
Across regions, the smallest sized individuals were consumed in the 

Scotian Shelf and Gulf of Maine, while the largest were consumed in 
the Gulf of Maine and Mid-Atlantic Bight (Table 2). The average size 
of NWA Ammodytes consumed across all predators decreased from 
124.3 to 112.2 mm from the early 1970s to 2015. The majority of 
predators consumed increasingly larger individuals with (predator) 
growth; however, a few consumed a consistent range of body sizes 
throughout their ontogeny, including bluefish, goosefish, longhorn 
sculpin, red and white hake (Appendix S1: Supplemental 5).

Information from the literature revealed six additional 
fish species—American plaice (Hippoglossoides platessoides, 
Pleuronectidae), Atlantic salmon (Salmo salar, Salmonidae), Atlantic 

F I G U R E  7   Per cent by mass of Northwest Atlantic Ammodytes in fish diets by decade. Data were collected by the Northeast Fisheries 
Science Center on the Northeast Continental Shelf from 1973 to 2015
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sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae), off-
shore hake (M. albidus, Merlucciidae), bluefin (Thunnus thynnus, 
Scombridae) and yellowfin (T. albacares, Scombridae) tunas, as well 
as northern shortfin (Illex illecebrosus, Ommastrephidae) and long-
fin inshore (Doryteuthis pealeii, Loliginidae) squids—consumed NWA 
Ammodytes in the region (Figure 4; Appendix S1: Supplemental 6). 
Six previously published studies used data from the NMFS trawl 
survey, but augmented sampling of certain species across seasonal 
periods including red (U. chuss, Phycidae), offshore, silver and white 
hakes (Garrison & Link, 2000; Link, Lucey, & Melgey, 2012), little (L. 
erinacea, Rajidae) and winter skates (Smith, Collie, & Lengyel, 2014), 
scup and black sea bass (Centropristis striata, Serranidae) (Byron 
& Link, 2010), Atlantic mackerel and Atlantic herring (Suca et al., 
2018), as well as summer flounder, bluefish, goosefish (Staudinger, 
2004) and longfin inshore squid (Hunsicker & Essington, 2006). 
The remaining studies represented predator diets from inshore and 
estuarine habitats (Gelsleichter, Musick, & Nichols, 1999; Novak, 
Carlson, Wheeler, Wippelhauser, & Sulikowski, 2017; Wuenschel, 
Able, Vasslides, & Byrne, 2013), offshore areas of the continental 
slope and pelagic waters (Chase, 2002; Logan, Golet, & Lutcavage, 
2015; Logan et al., 2011; Teffer, Staudinger, & Juanes, 2015), as well 
as Canadian waters (Carruthers, Neilson, Waters, & Perley, 2005; 
Dawe, Dalley, & Lidster, 1997; Hanson & Chouinard, 2002; Kelly 
& Hanson, 2013; Zamarro, 1992). A few notable areas where pre-
dation on NWA Ammodytes was extremely high included the Saco 
River Estuary in the Gulf of Maine, where the diets of juvenile and 

adult Atlantic sturgeon between 2013 and 2014 contained 85%–
96% (Index of Relative Importance, IRI) of A. americanus (Novak 
et al., 2017). In coastal waters off New Jersey in summer and fall 
during the mid-2000s, summer flounder consumed low to high 
(3%–17% M) amounts of NWA Ammodytes (Wuenschel et al., 2013). 
American plaice in Newfoundland waters also showed historically 
high amounts (16% FO) of A. dubius during the 1990s (Zamarro, 
1992), as well as pollock (7%–13% FO) in the Bay of Fundy in the 
1950s and 1960s (Carruthers et al., 2005). Several studies deter-
mined that bluefin tuna, especially smaller and younger fish (Logan 
et al., 2011, 2015), relied heavily (up to 69% M of their diet) on 
NWA Ammodytes during summer and fall in the Mid-Atlantic Bight, 
Southern New England, Gulf of Maine and Georges Bank regions 
during the late 1980s to early 2000s (Chase, 2002; Logan et al., 
2011, 2015), while low amounts (<5% M) were found in sympatric 
yellowfin tuna in the early 2000s (Teffer et al., 2015).

In summary, NWA Ammodytes were found in the diets of several 
fishes of high conservation concern including Atlantic cod, Atlantic 
salmon, thorny skate, barndoor skate, alewife, Atlantic sturgeon and 
bluefin tuna. While contributions to some of these predator diets 
were either episodic (alewife in the 1980s) or in relatively low amount 
(skates), NWA Ammodytes have comprised substantial proportions 
of the collective diets of Atlantic cod, Atlantic sturgeon, and bluefin 
tuna across historical periods (1960s–2000s) and spatial scales (U.S. 
and Canadian waters). Results suggest NWA Ammodytes contribute 
substantially to their overall nutrition and could influence abundance, 
distribution and population recovery (where they are depleted).

3.2 | Importance to seabirds

A total of 16 species of seabirds including terns, alcids, gulls, 
cormorants, murres, shearwaters, gannets and some ducks were 
reported to consume NWA Ammodytes in notable amounts, ac-
cording to published (Appendix S1: Supplemental 7) and unpub-
lished (Appendix S1: Supplemental 8) sources. This was either as 
adults or as provisioned to chicks along the eastern coasts of the 
United States and Canada (Figure 8). Long-term dietary studies 
conducted at 13 managed colonies between New York and Nova 
Scotia showed common terns (Sterna hirundo, Laridae), Arctic terns 
(S. paradisaea, Laridae) and roseate terns (S. dougallii, Laridae), as 
well as Atlantic puffins (Fratercula arctica, Alcidae) and razorbills 
(Alca torda, Alcidae) fed NWA Ammodytes to their chicks on a regu-
lar basis (Appendix S1: Supplemental 8). Some species such as dou-
ble-crested cormorants (Phalacrocorax auritus, Phalacrocoracidae), 
common terns, razorbills and roseate terns specialized on NWA 
Ammodytes, with diets containing 40%–100% M, FO or N across 
sampling periods (Appendix S1: Supplement 7). Roseate terns 
nesting in Southern New England and the Gulf of Maine dem-
onstrated the highest reliance. For example, chick diets at Great 
Gull Island (Long Island Sound, NY) consisted of 97% FO NWA 
Ammodytes in 2016 (M. Abemayor, unpublished data), while those 
on Bird Island (Buzzards Bay, MA) averaged 69% FO between 

TA B L E  2   Mean body sizes (mm) of Northwest Atlantic 
Ammodytes consumed by all fish predators caught by Northeast 
Fisheries Science Center on the Northeast Continental Shelf from 
1973–2015 by season, region and decade

Factor N Mean length (mm) Std Dev

Season

Fall 1707 113.4 35.7

Spring 2,655 121.2 52.2

Summer 378 105.2 42.9

Winter 199 122.3 51.7

Region

GB 2,400 116.3 41.5

GoM 378 141.6 38.6

MAB 1,192 123.0 49.5

ScS 19 84.0 32.1

SNE 948 103.8 53.0

Decade

1970s 630 124.3 44.8

1980s 2008 117.5 49.2

1990s 1,307 117.3 48.4

2000s 763 112.8 37.7

2010s 231 112.2 44.3

Abbreviations: GB, Georges Bank; GoM, Gulf of Maine; MAB, Mid-
Atlantic Bight; SNE, Southern New England and ScS, Scotian Shelf.
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F I G U R E  8   Proportion of Northwest Atlantic Ammodytes in marine bird diets, by seabird family (Larid: terns, gulls, and skimmers; Alcid: 
murres, guillemots, auklets, puffins and murrelets; Other: cormorants, shearwaters, etc.), mapped across the region. Refer to Appendix S1: 
Supplemental 7 for additional details on species-specific diet metric, location and time periods of studies. GB, Georges Bank; GoM, Gulf of 
Maine; MAB, Mid-Atlantic Bight; SNE, Southern New England and SS, Scotian Shelf
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2009 and 2011 (Goyert, 2015). Common terns at colonies in MA 
and NY fed their chicks 30%–78% FO NWA Ammodytes during 
similar time periods (Appendix S1: Supplemental 8). Adult terns at 
colonies in the northern Gulf of Maine and Nova Scotia, Canada, 
delivered a combination of (mainly) NWA Ammodytes, Atlantic her-
ring, and hake to their chicks (Kirkham, 1986; Rock, Leonard, & 
Boyne, 2007a, b; Shealer & Kress, 1994; Yakola, 2019). Regional 
populations of common and roseate terns staging (i.e., pre-migra-
tory) on Cape Cod, MA, were observed feeding almost exclusively 
on NWA Ammodytes for up to six weeks in late summer and early 
fall before departing for South America (Althouse, 2016; Jedrey, 
Harris, & Ray, 2010; J. Spendelow, personal communication).

In the Gulf of Maine and Georges Bank, a diversity of non-breed-
ing adult and immature seabirds were found to consume NWA 
Ammodytes during the late 1970s to early 1980s, particularly during 
the summer and fall, including great shearwaters (>50% IRI, Ardenna 
gravis, Procellariidae), Cory's (Calonectris borealis, Procellariidae) 
and sooty shearwaters (10%–50% IRI, A. grisea, Procellariidae), as 
well as black-legged kittiwakes (Rissa tridactyla, Laridae) (Powers & 
Backus, 1987). Between 2005 and 2009 in the Bay of Fundy, NWA 
Ammodytes were also important to staging (i.e., the period of time 
post-breeding and pre-migration to wintering sites when birds con-
gregate) sooty and great shearwaters, in some years acting as one 
of the top two forage fishes and comprising nearly one third of their 
overall diet (Ronconi, Koopman, McKinstry, Wong, & Westgate, 
2010) (Figure 4). Recent telemetry studies (2005–2014) of tagged 
great shearwaters suggested that movements reflecting foraging 
trips frequently overlap with NWA Ammodytes habitat in the south-
ern Gulf of Maine (Powers, Wiley, Allyn, Welch, & Ronconi, 2017).

Ammodytes provide a highly nutritional source of lipids and pro-
teins to seabirds (and other predators). Post-larval NWA Ammodytes 
showed higher caloric content than capelin (Baillie & Jones, 2003) 
and Atlantic herring (Hislop, Harris, & Smith, 1991) of comparable 
length. Over the last two decades in the Gulf of Maine, herring has 
frequently been replaced by high-lipid NWA Ammodytes in the diets 
of Atlantic Puffin, Razorbill and Common Murre (Scopel, Diamond, 
Kress, & Shannon, 2019). While larger seabirds (e.g., alcids) are able 
to dive and access adult Ammodytes throughout the water column, 
smaller species (e.g., Sterna) are limited to foraging at the sea surface 
where YOY and juveniles are more likely to occur (Breton & Diamond, 
2014; Chapdelaine & Brousseau, 1996). Small-sized Ammodytes, al-
though of lesser nutritional value compared to larger individuals, 
may be selected because of their availability, size or morphology; 
smaller individuals are also easier for adults to carry and for chicks 
to swallow (Bradstreet & Brown, 1985; Burger & Piatt, 1990; Burke 
& Montevecchi, 2008; Gaston & Woo, 2008).

Consumption of NWA Ammodytes by several seabird species 
(common murres, razorbills and great shearwaters) was shown to 
vary based on their abundance relative to other forage fishes and 
proximity to key habitats such as nesting colonies (Brown, Barker, 
Gaskin, & Sandeman, 1981; Overholtz & Link, 2006; Piatt, 1987; 
Pratte, Robertson, & Mallory, 2017; Regular et al., 2014). The spa-
tial distribution of NWA Ammodytes had a positive effect on seabird 

foraging behaviours, where availability impacted foraging ranges 
(e.g., razorbills and kittiwakes; Gaston & Woo, 2008; Jodice et al., 
2006) and persistence influenced fidelity to areas of high abundance 
(e.g., roseate terns and Atlantic puffins; Goyert, 2015; Jessopp 
et al., 2013). Seasonality is also important to regional breeding pop-
ulations such as herring gulls, which feed in more inshore habitats 
during summer (Ronconi, Steenweg, Taylor, & Mallory, 2014), and to 
non-breeding birds (e.g., great shearwaters) that migrate through the 
Gulf of Maine during summer and fall (Brown et al., 1981).

Ammodytes role as prey in the NWA ecosystem has important im-
plications for seabirds of conservation concern. State wildlife manage-
ment agencies in New England have recently identified 11 Species of 
Greatest Conservation Need (SGCN) that consume NWA Ammodytes 
as part of their diets or provisioning activities: roseate tern, Arctic tern, 
Atlantic puffin, razorbill, common murre (Uria aalge, Alcidae), great cor-
morant (P. carbo, Phalacrocoracidae), great shearwater, Cory's shearwa-
ter, sooty shearwater, northern gannet (Morus bassanus, Sulidae) and 
red-throated loon (Gavia stellata, Gaviidae). Roseate terns are listed as 
federally endangered in both Canada and the USA, including in all six 
north-eastern states. In the past decade, 90% of the north-eastern ro-
seate tern population nested on only three islands (Great Gull Island, 
NY, Bird and Ram Islands, MA; C. Mostello, unpub. data), and NWA 
Ammodytes dominated (≥57% FO) chick diets across those colonies (M. 
Abemayor, unpublished data; Goyert, 2015). As Ammodytes specialists, 
roseate terns show limited flexibility in their foraging strategies, which 
makes them particularly vulnerable to changes in availability (Goyert, 
2015). During the breeding season, feeding areas have been docu-
mented within 10–30 km of breeding colonies (Heinemann, 1992), but 
recent tagging studies suggest that adults may travel as far as 50 km 
to find suitable prey (Loring et al., 2019). Productivity and chick sur-
vival rates of roseate terns have been attributed primarily to the avail-
ability of high-quality prey (Kirkham, 1986), and thus, changes in the 
abundance and distribution of NWA Ammodytes relative to breeding 
colonies and staging locations could significantly affect their popula-
tion dynamics and breeding success if they are not able to exploit an 
alternative prey source of comparable nutrition. In addition, direct links 
between dietary importance and productivity have yet to be quantified 
explicitly in the region.

3.3 | Importance to marine mammals

NWA Ammodytes are generally known to be important prey to a 
number of marine mammals (Anonymous, 2006; Fisheries & Oceans 
Canada, 2009; L. A. Smith, Link, Cadrin, & Palka, 2015). Quantitative 
and qualitative reports of dietary exploitation of NWA Ammodytes 
were found for four species of pinnipeds: Atlantic harp (Pagophilus 
groenlandicus, Phocidae), grey (Halichoerus grypus, Phocidae), har-
bour (Phoca vitulina concolor, Phocidae) and hooded (Cystophora cris-
tata, Phocidae) seals; two small-sized cetaceans: Atlantic white-sided 
dolphin (Lagenorhynchus acutus, Delphinidae) and harbour porpoise 
(Phocoena phocoena, Phocoenidae); and three large whale spe-
cies: humpback (Megaptera novaeangliae, Balaenopteridae), minke 
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(Balaenoptera acutorostrata, Balaenopteridae) and fin (B. physalus, 
Balaenopteridae) whales (Figure 4; Appendix S1: Supplemental 9). 
Four of these species (humpback whales, fin whales, harbour por-
poise and harbour seals) were identified as SGCN within USA by 
state wildlife management agencies and one (fin whales) was listed 
as endangered by the U.S. Endangered Species Act.

For most marine mammals, diet data were scarce, and the only 
direct observations are derived from by-caught animals from various 
gillnet fisheries or stranded individuals. Grey seals were the best-stud-
ied marine mammal in the region, with estimates of NWA Ammodytes 
contributing between 15%–70% by M and FO to their diets (Appendix 
S1: Supplemental 9). DNA analysis of grey seal faeces from two loca-
tions (Muskeget and Monomoy Islands) in MA between 2016 and 2017 
found a very high FO (85%) of NWA Ammodytes in their diets (Z. Olson, 
personal communication, September 3, 2020). In waters off Muskeget 
and Monomoy Islands in Nantucket Sound, NWA Ammodytes domi-
nated grey seal diets between 2004 and 2008 (53% M, Ampela, 2009). 
During the 1990s in the Sable Island region of Canada, the diets of grey 
seals contained between 17% M (Beck, Iverson, Bowen, & Blanchard, 
2007) and 88% M (Bowen & Harrison, 1994, 2006) NWA Ammodytes 
across age and sex classifications. Movement studies in the NWA as 
well as Sable Island region confirmed repeated visitation and high use of 
nearshore areas and substrates typical of burrowing NWA Ammodytes 
(Breed, Bowen, & Leonard, 2013; Moxley, Skomal, Chisholm, Halpin, & 
Johnston, in press).

In other pinnipeds, dietary inclusion of NWA Ammodytes varied over 
geographical scales. Harbour seal diets contained between <5%–99% 
FO of NWA Ammodytes depending on geography in the Southern New 
England and Gulf of Maine regions (Bowen, Tully, Boness, Bulheier, & 
Marshall, 2002; Payne & Selzer, 1989). The Monomoy area of Cape Cod 
and Sable Island, Nova Scotia, were particularly important areas during 
the 1980s and 1990s, with harbour seal diets almost exclusively con-
taining NWA Ammodytes (A. dubius, Bowen et al., 2002; A. americanus, 
Payne & Selzer, 1989). Using animal-borne video cameras, behavioural 
studies of harbour seals documented effective feeding strategies on 
burrowing NWA Ammodytes whereby individuals consumed substrate 
containing prey, regurgitated the contents and re-consumed fish drift-
ing in the water column (Heaslip, Bowen, & Iverson, 2014). In Atlantic 
harp seals, diet proportions of A. dubius ranged from 19% to 64% FO 
among studies conducted between 1980 and 2004 (Appendix S1: 
Supplement 9), with subadults and pups generally consuming greater 
amounts compared to adults (Lawson & Stenson, 1997). Hooded seal 
diets contained lesser amounts of Ammodytes, generally <5% FO in wa-
ters off Greenland and Newfoundland during the 1990s–early 2000s 
(Haug, Tormod Nilssen, Lindblom, & Lindstrøm, 2007; Tucker, Bowen, 
Iverson, Blanchard, & Stenson, 2009).

From the little diet evidence that exists for other marine mammal 
species, as well as reports from areas outside the NWA, Ammodytes 
is inferred to be a key prey item. There have been limited direct ob-
servations of white-sided dolphins consuming NWA Ammodytes in 
coastal New England waters (Weinrich, Belt, & Morin, 2001); how-
ever, Craddock, Polloni, Hayward, and Wenzel (2009) documented 
high amounts (60% M) in the stomach contents of a stranded animal 

off of Cape Cod, MA, using multiple diet metrics. Other evidence of 
delphinid reliance on NWA Ammodytes is indirect but highly suggestive. 
For instance, white-sided dolphin seasonal distribution and habitat use, 
based on surveys from 1978 to 1988, has been shown to mirror that 
of NWA Ammodytes, leading to conclusions that they were likely major 
prey (Kenney, Payne, Heinemann, & Winn, 1996; Selzer & Payne, 1988).

Harbour porpoises are posited to consume NWA Ammodytes 
(COSEWIC, 2006), despite the absence of direct evidence of con-
sumption. In the NWA, stomach content studies have been limited 
to the Bay of Fundy, Canada (Recchia & Read, 1989), where herring 
may be more important to cetaceans. However, in areas outside the 
NWA, such as in the North Sea, harbour porpoise distribution and 
abundance correlated positively with Ammodytes fisheries (Herr, 
Fock, Kock, & Siebert, 2008; MacLeod, Pierce, & Santos, 2007; 
MacLeod, Santos, Reid, Scott, & Pierce, 2007), and starvation events 
coincided with Ammodytes declines (but see Thompson et al., 2007).

Diet determination of large whales is inherently difficult and often 
limited to (as well as biased by) visual observation of surface feeding and 
any prey or other non-prey species flushed to the surface (Hain et al., 
1995). Published observations confirmed 3 species of baleen whales 
feed on NWA Ammodytes (humpback, fin, and minke), and regionally, 
the strongest dietary link exists for humpback whales. The distribu-
tion and abundance of humpback whales between 1978 and 1988 on 
Georges Bank and in the Gulf of Maine (at least in the Stellwagen Bank 
National Marine Sanctuary) mirrored that of NWA Ammodytes (Payne, 
Nicolas, OBrien, & Powers, 1986; Payne et al., 1990). Recent techno-
logical advances using hydroacoustic measurements and real-time sen-
sor tags that track fine-scale diel movements showed the surface and 
bottom foraging behaviours of humpback whales were dependent on 
the distribution of NWA Ammodytes in the water column (Friedlaender 
et al., 2009; Hazen et al., 2009). Humpback whales use bubble nets to 
feed on NWA Ammodytes in the water column during the day and fol-
low them to the bottom at night and hunt them using a characteristic 
side-roll behaviour (Friedlaender et al., 2009; Hazen et al., 2009; Ware 
et al., 2014; Wiley et al., 2011). Periods of greater humpback whale ex-
change between primary feeding grounds in the Gulf of Maine and off 
Eastern Canada during the early 1990s were linked to forage availabil-
ity, including NWA Ammodytes (Stevick et al., 2006). Humpback whale 
calf survival after weaning in the Gulf of Maine has also been linked 
to the availability of NWA Ammodytes and Atlantic mackerel (Robbins, 
2007). Information on other large whales was indirect and derived from 
relating whale occurrences with known locations of NWA Ammodytes 
or their habitat (Overholtz & Nicolas, 1979; Payne et al., 1986, 1990; 
Weinrich, Martin, Griffiths, Bove, & Schilling, 1997).

One of the only areas in the NWA with direct diet data for minke 
whales is in Greenland. NWA Ammodytes were found in 92% FO of 
whale diets from offshore areas of West Greenland in the 1980s; how-
ever, they were less important during the early 1990s and replaced by 
capelin (Neve, 2000). In one study of individually identified minke whales 
off the coast of MA, sightings were less common in years when local 
NWA Ammodytes abundance was low, providing indirect evidence of 
their possible dietary importance (Murphy, 1995). Evidence from other 
areas of the world (e.g., Japan, Iceland and Norway) shows that minke 
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whales consume adult Ammodytes (Lydersen, Weslawski, & Øritsland, 
1991; Murase et al., 2009; Sigurjónsson, Galan, & Víkingsson, 2000; 
Tamura et al., 2009; Víkingsson et al., 2015). In waters off Scotland, 
minke whale diets contained high amounts (66% Number, 62% M) of A. 
marinus (Pierce, Santos, Reid, Patterson, & Ross, 2004), and their distri-
bution in surrounding waters corresponded to Ammodytes-associated 
habitats (Macleod et al., 2004; Olsen & Grahl-Nielsen, 2003). A body 
condition study off Iceland did not successfully link minke whale blub-
ber thickness with trends in Ammodytes abundance, but this was con-
sidered likely due to there being multiple prey species of importance 
(Christiansen, Víkingsson, Rasmussen, & Lusseau, 2013).

3.4 | Interspecific interactions

Within the broader NWA food web, the predictability and persistence 
of forage species such as Ammodytes is highly important to the mul-
tiple predator groups that specialize on them (e.g., Atlantic sturgeon, 
roseate terns and harbour seals; Figure 4, Appendix S1: Supplements 
6–9). Interspecific interactions may provide additional opportunities 
for socially flexible and opportunistic predators. The pelagic realm is 
a dynamic environment where prey aggregations (e.g., bait balls) can 
attract multiple predators that engage in facilitative (e.g., commensal) 
or competitive feeding frenzies (Goyert et al., 2018; Goyert, Manne, 
& Veit, 2014). During these social interactions, predatory fishes (e.g., 
tunas) and marine mammals can drive prey upwards towards sea-
birds feeding at the air–sea interface (Safina, 1990; Veit & Harrison, 
2017). In addition, fish, seabird and marine mammal predators may 
feed cooperatively on large aggregations through social facilitation, 
by providing cues to each other as to where NWA Ammodytes (and 
other aggregations of forage species) are located. This may be espe-
cially important for predators to take advantage of spatiotemporally 
persistent hotspots of NWA Ammodytes, which occur in areas such 
as Stellwagen Bank National Marine Sanctuary (Silva et al., 2019). 
Therefore, access, connectivity and communication pathways sur-
rounding such hotspots have the potential to affect facilitative or 
competitive interactions from multiple functional groups in the re-
gion. Our understanding of similar types of facilitative or competitive 
interactions of predators in the NWA region, especially over and at 
the seafloor when Ammodytes enter and exit sand refugia (Hobson, 
1986 for A. hexapterus), is extremely limited.

4  | THRE ATS AND REL ATED 
VULNER ABILITIES

Ammodytes play a clear and significant ecological role in natu-
ral systems of the NWA, and like other forage species (Hunsicker, 
Essington, Watson, & Sumaila, 2010) provide ecosystem services 
that directly and indirectly support humans in unrecognized and un-
expected ways (Alder, Campbell, Karpouzi, Kaschner, & Pauly, 2008; 
Pikitch et al., 2004; Section 5 of this synthesis). Existing and emerging 
threats from climate change, fishing pressure, aquaculture, mining of 

sand deposits, energy exploration and infrastructure, and other an-
thropogenic activities have the potential to impact NWA Ammodytes 
either directly through harvest or habitat degradation, or indirectly 
through altered food web relationships. Depending on the vulner-
ability of each Ammodytes species to these stressors, there could be 
radiating effects on regional human-ecological systems that increase 
the need for their explicit consideration, especially to avoid tipping 
points, in management and conservation initiatives.

4.1 | Changes in regional climate and 
oceanographic patterns

The NWA region is experiencing rapid warming due to climate 
change, with rates as high as 0.4–0.3°C per decade since the 1980s 
(Brickman, Hebert, & Wang, 2018; Pershing et al., 2015; Thomas et al., 
2017). Regional warming has been observed during all seasons, with 
the greatest increases during summer (Baumann & Doherty, 2013; 
Thomas et al., 2017). The timing of spring and fall conditions have 
shifted, with spring arriving earlier and fall ending later, which has re-
sulted in decreasing winter duration (Friedland et al., 2015; Thomas 
et al., 2017). Changes in winter and spring are particularly important 
to NWA Ammodytes since they complete their early life history and 
feed vigorously as adults during these periods. Ammodytes dubius 
are associated with cold water habitats of 2–7°C during winter and 
7–15°C during summer (Nelson & Ross, 1991), which are projected to 
warm substantially over the coming decades (Alexander et al., 2018; 
Saba et al., 2016). Observed and projected changes in regional precipi-
tation and hydrology affect the delivery of fresh water, sediments and 
nutrients into nearshore coastal areas (Groisman, Knight, & Zolina, 
2013; Guilbert, Betts, Rizzo, Beckage, & Bomblies, 2015; Rawlins, 
Bradley, & Diaz, 2012; Walsh et al., 2014) with implications for the 
conditions supporting A. americanus, in particular. Seasonal varia-
tion in wind forcing, freshwater run-off and water mass influx into 
the Gulf of Maine creates substantial seasonal and interannual dif-
ferences in circulation flows (Pettigrew et al., 2005; Smith, Pettigrew, 
Yeats, Townsend, & Han, 2012). These physical patterns and drivers 
are key underlying influences on the regional distribution and occur-
rence of planktonic early life history stages of NWA Ammodytes, as 
well as primary and secondary production (Churchill, Runge, & Chen, 
2011; Ji, Davis, Chen, & Beardsley, 2009; Ji et al., 2017). Ammodytes 
and other forage species that exhibit boom and bust cycles are likely 
driven, at least in part, by large-scale environmental changes (Dickey-
Collas et al., 2013), and when conditions become unfavourable, there 
is an increased risk of stock collapse due to the interactive effects of 
climate change and other stressors (e.g., fishing pressure or habitat 
disturbance; Pinsky, Jensen, Ricard, & Palumbi, 2011).

4.2 | Fluctuations in primary prey resources

Since 2010, evidence points to a shift in the external source that 
supplies C. finmarchicus, NWA Ammodytes’ primary prey during 
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the spring season, into the Gulf of Maine as more warm and saline 
(Calanus-poor) Atlantic slope water and less cold (Calanus-rich) Nova 
Scotia shelf current enters at depth through the Northeast Channel 
(Record et al., 2019). The shift in deep water salinity and tempera-
ture anomalies in deep-eastern Gulf of Maine waters corresponds to 
the recent weakening of Atlantic Meridional Overturning Circulation 
and northward shift of the Gulf Stream (Caesar, Rahmstorf, 
Robinson, Feulner, & Saba, 2018). Since 2010, observed abundances 
of lipid-rich stages of C. finmarchicus in the Maine Coastal Current 
and Wilkinson Basin have declined by about 30%, consistent with a 
lower supply in the eastern Gulf of Maine and partial amplification of 
the coastal current (Record et al., 2019).

In addition to changes in supply and transport, C. finmarchicus 
abundance is also driven by changes in the timing and magnitude 
of local primary production. One source of variability is the match 
or mismatch of food available to C. finmarchicus emerging from dia-
pause in spring, which has already advanced in time, and is predicted 
to continue advancing, due to earlier spring warming (Maps et al., 
2011; Pierson, Batchelder, Saumweber, Leising, & Runge, 2013). 
Shifts in the timing of seasonal events during recent decades are 
linked to changes in primary productivity and growth cycles leading 
to large earlier cohorts of C. finmarchicus, despite reduced overwin-
tering stock (Record et al., 2019; Staudinger et al., 2019). Changes 
in spring production affect the supply of C. finmarchicus in subse-
quent seasons, particularly on Stellwagen Bank, Georges Bank and 
elsewhere in coastal waters of Southern New England (Greene & 
Pershing, 2007). Whether this favourable match between primary 
and secondary production in the western Gulf of Maine continues 
in the future is uncertain. Long-term habitat modelling (that does 
not take into account advective supply) suggests a long-term de-
cline in regional C. finmarchicus abundance (Grieve, Hare, & Saba, 
2017). As C. finmarchicus represents the primary source of lip-
ids to pelagic consumers in the Gulf of Maine, a reduction in its 
availability may have consequences not only for NWA Ammodytes 
but also for the broader regional food web (Johnson et al., 2011). 
Substantially, lower abundances of C. finmarchicus observed in the 
eastern Gulf of Maine have already been implicated in shifting the 
foraging distribution of North Atlantic right whales (Eubalaena gla-
cialis, Balaenidae), which also rely on C. finmarchicus as a principal 
food source (Record et al., 2019).

4.3 | Climate change impacts

NWA Ammodytes have been ranked as “moderately vulnerable” to 
climate change relative to 81 other marine fishes and invertebrates 
along the Northeast USA (Hare et al., 2016). Under a high emis-
sions scenario (RCP 8.5) for the time period of 2005–2055, NWA 
Ammodytes are expected to have high climate exposure from in-
creasing sea surface temperatures (high–very high exposure), ocean 
acidification (very high) and sea level rise (high), among other fac-
tors (Hare et al., 2016). Biological and ecological attributes that in-
fluence their sensitivity to climate impacts confer moderate-to-high 

restrictions on mobility, and moderate habitat specificity. This is 
due to their strong association with sandy sediments, often with 
patchy and ephemeral distribution, located in relatively shallow 
water depths of <100 m. It remains unresolved how changes in 
coastal hydrology could impact habitat suitability, particularly for A. 
americanus. Aspects of their spawning cycle, early life history and 
sensitivity to increasing temperatures also influence their moderate-
to-high climate vulnerability ranking (Hare et al., 2016). However, 
projections of future variability and long-term changes in circulation 
are uncertain (Brickman et al., 2018). Similarly, acidification trends 
of Gulf of Maine waters and parts of the greater NWA shelf have so 
far been masked by the unusually strong temperature and salinity 
increases (i.e., lower CO2 solubility and higher alkalinity, buffering 
capacity; Salisbury & Jönsson, 2018). A reversal of these decadal 
trends, combined with predicted increases in freshwater input, could 
lead to a more rapid acidification of NWA coastal shelf waters in the 
coming decades, as compared to current model predictions for this 
region (~−0.35 pH units by 2099, Bopp et al., 2013).

Emerging research on A. dubius indicates that this species ex-
hibits biological characteristics that may make them particularly 
vulnerable to ocean warming and acidification, more so than pre-
viously thought. As a fall/winter spawner, NWA Ammodytes release 
embryos and larvae into cold and cooling water; warmer tempera-
tures in fall may affect hatch timing and survival characteristics 
with uncertain consequences (Laurel, Hurst, Copeman, & Davis, 
2008). Recently, Murray et al. (2019) compared the CO2 × tempera-
ture sensitivity during the embryo stage between A. dubius and a 
nearshore forage fish, Atlantic silverside (Menidia menidia). While 
high CO2 conditions of ~ 2,000 µatm reduced embryo survival in 
silversides by 6%–15% (Baumann, Cross, & Murray, 2018), in A. du-
bius these reductions were more than an order of magnitude greater 
(80%–350%), making this the most CO2-sensitive fish species tested 
to date. Moreover, acidified conditions delayed hatching, reduced 
remaining endogenous energy reserves at hatch and reduced em-
bryonic growth. Importantly, while silverside embryos showed no 
clear temperature dependency in their CO2 sensitivity (Murray & 
Baumann, 2018), survival of A. dubius embryos showed a synergistic 
negative effect of temperature and CO2. These assessments require 
further empirical support that should extend to larval and early juve-
nile NWA Ammodytes stages.

A large number of fish stocks in the NWA have shown strong 
responses to changing climate conditions over historical periods 
through shifts in distribution, range, and phenology (Nye, Link, 
Hare, & Overholtz, 2009; Walsh et al., 2015). These studies pro-
vide important evidence and insights on the sensitivity and adap-
tive capacity of species to climate impacts (Beever et al., 2016). The 
centre of biomass of 24 out of 36 (67%) fish stocks generally shifted 
either poleward and/or to greater depth in the NWA Shelf ecosys-
tem (Nye et al., 2009). Catch data from the NMFS bottom trawl sur-
vey (Pinsky, Worm, Fogarty, Sarmiento, & Levin, 2013) indicate that 
NWA Ammodytes showed high interannual variation, but no detect-
able shifts in latitude or depth (p-values > .05) since the late 1960s; 
however, low catchability and gear changes preclude definitive 
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conclusions. Comparisons of larval and adult occurrence in the 
NWA ecosystem between 1977–1987 and 1999–2008 showed a 
significant shift in spatial distribution and seasonal phenology of 
larval Ammodytes in the region (Walsh et al., 2015). Timing of larval 
NWA Ammodytes occurrence was significantly later during win-
ter and showed a simultaneous spatial shift in distribution north-
ward and to deeper waters along the continental shelf; changes 
in the distribution of adult NWA Ammodytes were also evaluated 
but showed no trend (Walsh et al., 2015), possibly due to the high 
dependency of older life stages on specific bottom substrates. 
Projected changes in the centre of biomass for A. dubius suggest 
poleward shifts in latitude of 92.8 km ± 59.3 under a low carbon 
emissions (RCP 2.6) scenario and 256.4 km ± 135.8 under a high 
(RCP 8.5) scenario over the coming century (Morley et al., 2018). 
Concurrent decreases in suitable thermal habitat available to A. du-
bius were estimated at −23.0% ± 15.5 and −64.9% ± 24.3 under the 
low and high climate scenarios, respectively (Morley et al., 2018).

Collectively, these results suggest that larval stages of 
Ammodytes in the NWA are responding to changing environmen-
tal conditions. The lack of evidence for shifts in distribution, range 
and phenology of adults could be a function of stochasticity or data 
scarcity. Alternatively, adult NWA Ammodytes may lack the capacity 
to adapt their distribution or behaviour to track optimal conditions, 
or perhaps they are adapting in place (Parmesan, 2007). If NWA 
Ammodytes are not able to keep pace with changing environmental 
conditions at any life stage, they will be at increased risk of popula-
tion declines given projections of declining suitable habitat (Morley 
et al., 2018).

4.4 | Fisheries

There are currently no large-scale commercial fisheries directly 
targeting Ammodytes in the NWA. However, they are caught as by-
catch in some small-scale bait fisheries off the Northeast USA (no 
fishery exists in Canada). Regulations developed by the Mid-Atlantic 
and New England Fishery Management Councils restrict commercial 
harvest of NWA Ammodytes in federal waters (i.e., 3–200 nautical 
miles from shore). A 1,700-pound possession limit (either as ag-
gregate or for individual species) applies to commercial harvest of 
NWA Ammodytes and over 50 additional forage species in federal 
waters of the Mid-Atlantic region (i.e., from New York through Cape 
Hatteras, NC; MAFMC, 2017). In federal waters of New England, 
NWA Ammodytes possession limit for the exempted fisheries is zero, 
although the New England Fishery Management Council (NEFMC) 
could consider allowing possession under existing policies. Small-
mesh fisheries in this area are allowed, but mesh size regulations de-
signed to minimize by-catch in the groundfish fishery are effective 
in limiting targeted fishing on NWA Ammodytes. Overall, restrictions 
in federal and state waters (e.g., gear restrictions) limit the poten-
tial for the development of large-scale commercial harvest of NWA 
Ammodytes at the present time. Nonetheless, fishing has histori-
cally been opportunistic in nature (Branch, Lobo, & Purcell, 2013); 

as such, there are concerns by the conservation and management 
community an Ammodytes fishery could still be pursued in the NWA 
as a replacement species (e.g., for bait) or new industry (e.g., fish oil), 
and if this happened there would be detrimental consequences on 
the broader community of predators known to rely on them as prey.

Stock assessments of species like Ammodytes that undergo boom 
and bust cycles in a Maximum Sustainable Yield context require un-
derstanding the implications of highly stochastic recruitment dy-
namics (Arnott, Ruxton, & Poloczanska, 2002; Deyle et al., 2013). 
This is difficult to estimate and subject to high uncertainty; there-
fore, precautionary and ecosystem-based management approaches 
that account for direct and indirect sources of fishing and other mor-
tality will be important (see Section 5 of this synthesis). In addition, 
changes in bottom trawl fisheries could have unintended impacts on 
Ammodytes, even when they are not directly targeted. For example, 
flatfish and shrimp fisheries in Europe were hypothesized to have a 
negative effect on A. marinus, A. tobianus and H. lanceolatus pres-
ence due to disturbance and incidental mortality caused by fishing 
gear to bottom habitats (Tien et al., 2017). Strong associations with 
certain bottom substrates increase the risk of Ammodytes to local-
ized depletion, particularly when capture rates remain high during 
low abundance years in areas where fish exhibit dense aggregations 
(Csirke, 1988). Bottom fishing gear can also disturb the demersal 
eggs of Ammodytes during developmental periods and older individ-
uals during winter dormancy when they are buried in the sediment.

Recently, the Mid-Atlantic Fishery Management Council has taken 
steps to move towards an ecosystem-based approach to fisheries 
management. For example, they recognized forage species as key 
components of the regional ecosystem and increased protections by 
implementing a possession limit to prevent the development of large-
scale commercial fisheries for over 50 previously unmanaged forage 
species (MAFMC, 2017). New large-scale fisheries or the expansion 
of existing directed fisheries for these species are now effectively 
prohibited in federal waters off of NY through Cape Hatteras, NC. 
The New England Fishery Management Council has also begun to 
take steps towards more holistic approaches, although actions to date 
have been limited to managed forage fishes such as Atlantic herring. In 
2018, the NEFMC approved Amendment 8 (https://www.nefmc.org/
libra ry/amend ment-8-2), a control rule that caps fishing mortality on 
Atlantic herring at 80% of sustainable levels when biomass is relatively 
healthy, and much lower levels if biomass declines. This control rule 
is intended to better address uncertainty in interannual variation in 
biomass estimates of the species. The rule explicitly recognizes the 
role of Atlantic herring as forage within the ecosystem. Amendment 
8 also proposes to prohibit vessels fishing with midwater trawl gear 
in nearshore waters (within 12 nautical miles) from Maine through 
the Rhode Island/Connecticut border. In addition, the New England 
Council is developing a draft Fishery Ecosystem Plan for Georges 
Bank as an example to consider adopting such an approach (Applegate 
et al., 2019). Early drafts and modelling consider and include the ef-
fects of forage on prey abundance and vice versa. The Forage Fish 
Conservation Act (introduced to the U.S. House as HR 2236 in April 
2019) is emerging legislation that builds upon the Magnuson-Stevens 

https://www.nefmc.org/library/amendment-8-2
https://www.nefmc.org/library/amendment-8-2
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Fishery Conservation and Management Act to strengthen key protec-
tions and promote responsible management of forage fishes nation-
ally. All of these efforts could benefit regional populations of NWA 
Ammodytes, though indirect effects (e.g., to intraguild feedback loops 
with Atlantic herring) can be complicated and have unintended out-
comes that require regular data collection to determine outcomes and 
effectiveness (Fogarty et al., 1991; Sherman et al., 1981).

4.5 | Energy development and resource extraction

During recent decades, energy development and exploration in the 
U.S. Atlantic has increased, at least in part as a result of U.S. policy. In 
an effort to identify shared risks and opportunities across seascapes, 
regional ocean partnerships such as the Northeast Regional Ocean 
Council (established in 2005) and Mid-Atlantic Regional Council on 
the Ocean (established in 2009, now the Mid-Atlantic Committee 
on the Ocean) formed to provide comprehensive, multi-use plan-
ning frameworks. Construction, dredging and resource mining (e.g., 
sand) all have the potential to directly impact Ammodytes populations. 
Offshore sand mining could potentially expand due to the need for 
substrate to replenish and elevate beaches and other shoreline habi-
tats experiencing increased erosion and flooding from sea level rise 
and coastal storms (Desprez, 2000; Slott, Murray, Ashton, & Crowley, 
2006). Since Ammodytes have demersal eggs, and older individuals 
bury within the substrate, disturbances to bottom habitats are likely 
to affect them disproportionately, relative to other forage fishes, and 
result in decreased production. The usability and amount of upper 
shoal habitat, preferred by Ammodytes (Rutecki et al., 2014), can be im-
pacted by offshore dredging depending on varying scenarios (Dibajnia 
& Nairn, 2011). Offsetting sand mining or dredging activities during 
times of high Ammodytes abundance and spawning periods can lessen 
impacts (e.g., winter in the Mid-Atlantic Bight; Slacum et al., 2010).

Offshore infrastructure development and construction projects can 
transform the coarse-grain sediment habitats that Ammodytes rely on 
into artificial reef habitat that supports hard-bottom associated com-
munities (Lindeboom et al., 2011). This would exclude Ammodytes from 
previously occupied areas. Indirect effects of these activities may also 
impact Ammodytes; for example, it has been hypothesized that artificial 
reef effects lead to an increase in predators that exert additional top-
down pressure on Ammodytes (e.g., by Atlantic cod; Lindeboom et al., 
2011). The cumulative effects from multiple closely located develop-
ment sites would pose additional risk (Leonhard, Stenberg, & Støttrup, 
2011). The development has the potential to act at different time scales 
by altering Ammodytes habitats immediately through direct distur-
bance, and then incurring lagged ecological effects as the community 
stabilizes (Gray, 2006; Petersen & Malm, 2006).

Alternatively, some development activities could have neutral or 
positive effects. In the North Sea, the presence of A. marinus and A. 
tobianus was assessed before and after the construction of wind tur-
bines. Short-term effects of the facilities were either not observed 
(Lindeboom et al., 2011) or showed increases in density at wind de-
velopment sites after construction (Degraer, Brabant, Rumes, & Vigin, 

2016; Leonhard et al., 2011; Stenberg et al., 2015; van Deurs et al., 2012; 
Vandendriessche, Hostens, Courtens, & Stienen, 2011). Positive short-
term effects were attributed to increased or neutral effects on sedi-
ment quality, increases in juvenile abundance, associations of midwater 
feeding schools with structure and/or reductions in predators during 
construction (Leonhard et al., 2011; van Deurs et al., 2012). Reductions 
in fishing activities during construction and operation of wind farms 
also have the potential to benefit Ammodytes, though this could lead to 
localized increases in competitors and predators that experience con-
comitant reductions in fishing mortality. Alternatively, these patterns 
could be due to, or in synergy with, the aggregation effects of the off-
shore structures through flow or shade effects. No long-term effects 
on Ammodytes were seen in such areas, despite an increase in species 
diversity due to artificial reef effects (Degraer et al., 2016; Leonhard 
et al., 2011; Stenberg et al., 2015; van Deurs et al., 2012).

Development, accidents (e.g., oil spills) or run-off from facilities can 
have other unintended consequences that need to be carefully con-
sidered if they are undertaken in proximity to key NWA Ammodytes 
habitats (see Fisheries & Oceans Canada, 2009). Under normal con-
ditions, toxicity burdens of heavy metals (primarily mercury) in NWA 
Ammodytes show mid-range Hg levels compared to other forage 
fishes such as bay anchovy, mackerel, butterfish and herring in coastal 
Northeast U.S. waters (Staudinger, 2011). NWA Ammodytes live within 
or near sandy bottom habitats, which generally do not retain con-
taminants as much as silty, muddy habitats. This aspect of their life 
history plus their relatively low position in the food chain likely limits 
exposure. However, following oil spills and other chemical disasters, 
Ammodytes have accumulated toxic chemicals from fuel oils and dis-
persants (Calbet, Saiz, & Barata, 2007; Hansen, Altin, Olsen, & Nordtug, 
2012). Such exposure can have immediate lethal or long-term chronic 
sublethal effects on Ammodytes and their predators (Hjermann et al., 
2007). Negative effects of oil spills on Ammodytes include physiological 
haemorrhaging when Ammodytes burrow into oil-contaminated sands 
and reduced time buried in oil-contaminated sand, which increases ex-
posure to predators (A. hexapterus, Pearson, Woodruff, Sugarman, & 
Olla, 1984; Pinto, Pearson, & Anderson, 1984), as well as mass die-offs 
in response to oil and/or the subsequent detergents that are used to 
contain or clean up spills (e.g., Torrey Canyon clean up in the United 
Kingdom; Reay, 1970; Simpson, 1968). Additional toxic burdens (e.g., 
paralytic shellfish poisoning associated with red tides) have led to mass 
mortalities of higher trophic level predators of conservation and man-
agement concern (Jessup et al., 2009).

The interactive impacts of a changing climate and other anthro-
pogenic stressors on Ammodytes are largely unknown, but as a key 
prey species, these cumulative effects warrant careful consideration.

5  | ECOSYSTEM SERVICES AND 
ECOSYSTEM-BA SED MANAGEMENT

In marine systems, increasing attention has been focused on charac-
terizing the direct and indirect ecosystem services provided by for-
age fishes (Alder et al., 2008; Pikitch et al., 2004). As demonstrated by 
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this synthesis, NWA Ammodytes provide extensive support to higher 
trophic levels through energetic transfer. Many of the 72 predators that 
rely on NWA Ammodytes directly contribute to regional economies and 
food resources through commercial and recreational fisheries, as well 
as cultural and other recreational benefits such as tourism and viewing 
activities (Nelson et al., 2013). The bottom-up contributions of NWA 
Ammodytes to the landings of commercially exploited fish predators 
in the NWA are likely substantial. Their indirect value may outweigh 
any commodity services arising from direct harvest and sale of NWA 
Ammodytes if a large-scale commercial fishery was ever pursued in the 
region. A formal valuation analysis of existing supporting and projected 
commodity services (e.g., based on harvest targets), derived from NWA 
Ammodytes, would be an important preliminary step to assess potential 
trade-offs, stakeholder conflicts and competing demands within the 
NWA region (Hunsicker et al., 2010; Koehn et al., 2017).

Ecosystem services are crucial for developing ecosystem-based 
management (EBM) and ecosystem-based fisheries management 
(EBFM) plans and are increasingly being integrated into sustainabil-
ity efforts in the world's oceans (Altman, Boumans, Roman, Gopal, 
& Kaufman, 2014; Francis, Hixon, Clarke, Murawski, & Ralston, 
2007; Patrick & Link, 2015; Ruckelshaus, Klinger, Knowlton, & 
DeMaster, 2008). EBFM approaches to resource management in-
corporate interactions among species (e.g., predator-prey, compet-
itive) and with their environment (e.g., climate change), account for 
direct and indirect effects of human activities and view humans as 
an integral component of ecosystems (Boumans, Roman, Altman, & 
Kaufman, 2015; Patrick & Link, 2015; Van Dyne, 1969). Important 
steps have been taken by the United States and Canada to move 
towards implementation of EBFM in the NWA (Link et al., 2011) 
through policy (Mid-Atlantic Management Council, 2019; National 
Ocean Council, 2013), regional planning initiatives (Northeast 
Regional Planning Body, 2016) and recent fishery management 
council actions (MAFMC, 2017). These actions recognize the need 
for integrative approaches to protect the long-term function of 
ecosystem pathways and balance multiple stakeholder objectives.

Minimum realistic models (MRMs) that account for natural preda-
tion and fishing mortality rates provide an example of how ecosystem 
considerations have been approached in the NWA region (Gamble & 
Link, 2009; Link et al., 2011). This type of model has been used to 
answer research questions pertaining to some forage fishes includ-
ing Atlantic herring, Atlantic mackerel and butterfish; however, they 
have yet to be directly linked to species stock assessments or man-
agement actions. To date, the role of NWA Ammodytes as prey has 
not been explicitly accounted for in stock assessments, despite their 
apparent importance in years of low Atlantic herring and mackerel 
abundance (Gamble & Link, 2009; Link & Sosebee, 2008; Moustahfid, 
Link, Overholtz, & Tyrrell, 2009; Overholtz, Jacobson, & Link, 2008; 
Overholtz & Link, 2006; Tyrrell, Link, & Moustahfid, 2011). Further 
analyses are needed to determine NWA Ammodytes contributions 
to the energetic demands, condition, marketability and population 
dynamics of commercially important predators as well as in relation 
to other forage fishes and regional species of conservation concern 
(Golet, Cooper, Campbell, & Lutcavage, 2007; Logan et al., 2015). 

Because Atlantic cod, summer flounder, winter skate, common terns 
and grey seals rely heavily on NWA Ammodytes as prey on a seasonal 
basis and have robust diet and productivity/fecundity data series, 
these species are ideal candidates to model energetic links and flow, 
non-linear functional responses and foraging thresholds that different 
predators may exhibit in response to changes in prey availability.

Preliminary efforts to incorporate NWA Ammodytes as prey 
into ecosystem models were conducted using the Massachusetts 
Multiscale Integrated Model of Earth Systems (MIMES). This pre-
dicted a decrease in the abundance of humpback whales under 
forecasted simulations of fishing pressure on NWA Ammodytes 
(Boumans et al., 2015). Efforts are underway to incorporate environ-
mental variables and the effects of climate change into projections 
of food web dynamics over the coming century. However, NWA 
Ammodytes remain underrepresented in many regional EBM plans, 
and their explicit consideration would improve overall understand-
ing of ecosystem dynamics in the NWA.

Scaling reference points based on confidence in scientific knowl-
edge and assessments is recommended (Pikitch et al., 2012) and cur-
rently used to set regional catch limits. Since NWA Ammodytes are 
unmanaged forage fishes, information on their biology and population 
dynamics is woefully inadequate compared to managed species (e.g., 
Atlantic herring). Lastly, the Magnuson-Stevens Fishery Conservation 
and Management Act identifies the maintenance of forage fishes for 
all components of the ecosystem as an important consideration in 
setting optimal yields for harvested species. In support of these con-
servation and management goals, we conclude this synthesis by out-
lining remaining gaps in knowledge and high-priority basic and applied 
research needs for NWA Ammodytes populations in the NWA region.

6  | A PATH FORWARD: RESE ARCH NEEDS

Compared to Ammodytes species in the NWA, knowledge of the 
life history, population dynamics and trophic ecology of European 
congeners (A. marinus and A. tobianus) is significantly greater. This 
is in part because a targeted commercial fishery exists in Northeast 
Atlantic waters where stock assessment data are collected regularly 
(Ellis, Milligan, Readdy, Taylor, & Brown, 2012). A comparison of 
what is known across the two regions helps identify critical knowl-
edge gaps and research needs in the NWA.

The industrial fishery for A. marinus began in the 1950s in the 
North Sea and expanded rapidly in the following decades, growing 
to become the region's largest single-species fishery at around 0.8 
million metric tons annually. More recently, yields exhibited strong 
declines, with annual catch reduced to around 313,000 metric tons 
between 2003–2010 and localized depletion occurring in multiple 
areas (ICES, 2010). Fishing on A. marinus had broad ecosystem ef-
fects throughout the North Sea (Green, 2017; Wanless, Harris, 
Newell, Speakman, & Daunt, 2018). Statistical and ecological model-
ling studies have investigated the trophic implications of long-term 
changes in Ammodytes population size structure, abundance and nu-
trition, revealing direct links to seabird breeding success at multiple 
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sites in the North Sea (Frederiksen, Wanless, Harris, Rothery, & 
Wilson, 2004, Frederiksen, Elston, Edwards, Mann, & Wanless,2011; 
Wanless, Wright, Harris, & Elston, 2004; Wanless et al., 2018).

Similar to the NWA, the North Sea is experiencing rapid warming 
due to climate change (Rutterford et al., 2015), which has been linked 
to several detrimental effects on Ammodytes populations. Warming has 
been associated with increases in the metabolic rate of YOY Ammodytes 
and subsequent reductions in growth and energy reserves, which com-
promise their ability to attain adequate body sizes needed to survive 
overwintering (van Deurs, Hartvig, & Steffensen, 2011). Increasing tem-
peratures have also been shown to reduce the reproductive potential of 
adults (Wright, Orpwood, & Scott, 2017). In addition, climate change is 
altering the availability of key Ammodytes prey in the North Sea where 
C. finmarchicus is being replaced by a warmer water conspecific, C. 
helgolandicus (Calanidae). Calanus helgolandicus differs in phenology, 
size, and nutrition (Frederiksen et al. 2011, van Deurs et al., 2009; van 
Deurs et al., 2015), which has implications for energy flow to high-
er-level predators (von Biela et al., 2019). Examples from the Northeast 
Atlantic presented here and throughout this synthesis show how the 
competing demands from the commercial fishery relative to fish, ma-
rine mammal and seabird predators can be managed (Furness, 2002) 
when Ammodytes are explicitly considered. Further, regional fisheries 
management in the North Sea provides guidance on the tools and data 
needed to advance research and conservation in the NWA.

An immediate and high-priority need in the NWA is to resolve 
long-term patterns and drivers of Ammodytes abundance and distri-
bution. Ichthyoplankton surveys (e.g., NEFSC Ecosystem Monitoring 
(EcoMon)) have effectively tracked the distribution and abundance 
of early life stages of NWA Ammodytes, as well as co-occurring 
plankton and oceanographic conditions (Sherman et al., 1981; Walsh 
et al., 2015). Continued support for this programme is imperative to 
prevent data gaps in one of the few long-term time series of NWA 
Ammodytes. However, catchability remains a limiting factor in most 
bottom trawl surveys as NWA Ammodytes, particularly post-larval 
YOY and age-1 fish, are not reliably assessed. The observed trend 
of declining NWA Ammodytes body size in predator diets is an im-
portant finding from our analysis of the NEFSC dataset. Preliminary 
examination of Ammodytes caught in the NEFSC trawl survey pro-
vided complementary evidence of decreases in maximum body size 
over similar time periods, but additional analysis is needed before 
definitive conclusions can be made about how size-related changes 
may affect habitat use and vulnerability to predation.

Catchability issues have also precluded reliable estimates of 
some aspects of the life history of NWA Ammodytes. An updated 
and thorough assessment of the reproductive biology (e.g., gonadal 
development schedules), timing, duration and locations of spawning 
are needed throughout their NWA range. Population connectivity 
and growth relative to adjacent regions (e.g., Canadian and Arctic 
regions) remain largely unresolved and crucial to identify and pro-
tect source and sink populations. Increased seasonal coverage of 
Ammodytes populations could yield new insights into factors af-
fecting survival and recruitment during critical life phases. Studies 
during summer are important because this is the time period when 

YOY Ammodytes have just transitioned to relying on sand habitats 
and overlap is maximized spatially with many demersal and pelagic 
predators. In addition, a focus on NWA Ammodytes winter ecology 
is needed to resolve spawning duration times, larval distribution and 
recruitment, winter dormancy behaviour and risk to predation.

The trophic consequences of high spatiotemporal variability in NWA 
Ammodytes populations and relative to other forage fishes are likely to 
affect predators in different ways depending on a variety of constraints, 
including predator mobility, overlap, behaviour and physiological fac-
tors (e.g., dietary needs, energy transfer rates). Some predators may ex-
hibit strong localized correlations with NWA Ammodytes distributions; 
however, because these predators forage over broad spatial areas and 
can switch prey based on relative availability, long-term population dy-
namics may show weak associations (Smith, Ligenza, Almeida, & Link, 
2007). In contrast, specialist predators (e.g., nesting seabirds, partic-
ularly those with high foraging site-fidelity, and habitat-associated pi-
scivorous fish) may be more dependent and at greater risk to shifts in 
NWA Ammodytes abundance and distribution, particularly as climate 
change and other broad-scale processes alter their availability and en-
ergetic value across interannual scales (von Biela et al., 2019; Erikstad, 
Reiertsen, Barrett, Vikebø, & Sandvik, 2013; Óskarsson, 2008). Studies 
are needed to fully comprehend Ammodytes’ trophic role in the NWA, 
particularly to increase our understanding of (a) when predators switch 
to alternative prey, (b) what thresholds lead to detrimental spatiotem-
poral mismatches and (c) how changes in energetic pathways affect 
the fitness/condition and breeding/spawning success of higher-level 
predators. As has been seen in the Northeast Atlantic, such informa-
tion could guide management decisions of harvest amounts during low 
and high NWA Ammodytes abundance years (Furness, 2002) as well as 
the potential impacts from other human activities that could disturb 
Ammodytes habitat (e.g., sand mining, dredging).

Because inshore habitats are not well sampled by the NEFSC 
bottom trawl survey, there is a limited understanding of the eco-
logical role of NWA Ammodytes in these systems. A few studies 
suggest that certain species specialize on NWA Ammodytes in these 
areas (e.g., Atlantic sturgeon, Novak et al., 2017) but were limited 
in geographical and temporal scope. Additional population and food 
habits data exist from inshore surveys conducted by state fisheries 
agencies and research institutions. To determine whether discrete 
sampling efforts are representative of broader regional importance, 
the analyses undertaken here could be augmented by synthesizing 
existing datasets from long-term sampling programmes that target 
regional bays and estuary habitats (e.g., Northeast Area Monitoring 
and Assessment and Chesapeake Bay Multispecies Monitoring and 
Assessment Programs (NEAMAP and CheMMAP)).

The NWA region is of critical importance to the life cycles 
of many long-distance seasonal migrants that come to feed on 
Ammodytes and other forage resources during the summer and fall 
months (Diamond, 2012; Staudinger et al., 2019). Data from seabird 
provisioning studies likely reflect nearshore availability of NWA 
Ammodytes (Goyert, 2014), but are skewed towards chick diets 
during the summer rearing season. Despite their apparent impor-
tance in some areas (e.g., to roseate terns in MA and NY), direct links 
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between NWA Ammodytes availability and chick productivity have 
yet to be established. Largely absent from the literature are diet data 
on adults during the breeding and non-breeding seasons, both within 
and outside the NWA region. Reliance on NWA Ammodytes during 
the critical post-migration (fall) and pre-breeding (spring) periods are 
of particular importance to migrating seabirds, given their high nutri-
tional demands that support survival, recruitment and productivity.

Our synthesis found relatively few accounts of large (e.g., tunas and 
marine mammals) and small (e.g., clupeids, Atlantic mackerel) pelagic 
predators; however, the few studies that were identified suggest NWA 
Ammodytes are important to these groups over seasonal and decadal 
scales. A better understanding is needed of the relationship between 
NWA Ammodytes and Atlantic herring, particularly how Atlantic herring 
declines, recovery and sustainability may affect the interplay between 
these two species and other regional forage fishes. Large data gaps are 
also evident for marine mammals throughout most NWA subregions 
and historical periods. Diet data are largely qualitative, opportunistically 
collected (often from a few stranded individuals), or derived from indi-
rect observations of movements. Based on studies from other regions, 
some marine mammals rely heavily and likely specialize on Ammodytes 
(e.g., humpback and minke whales); nonetheless, there is currently in-
sufficient evidence in the published literature to support strong conclu-
sions for NWA populations. Emerging genetic and ecological tools such 
as eDNA, barcoding, stable isotope and fatty acid analyses have high 
potential to increase knowledge on data-poor predators within NWA 
food webs, especially those for which regular direct sampling has been 
prohibitive due to accessibility issues (e.g., at sea adult seabirds; rorqual 
whales, endangered and listed species).

The sensitivity and adaptive capacity of NWA Ammodytes to cli-
mate change remains an area of high uncertainty due to a lack of 
regional and species-specific studies. It is currently unknown if A. 
dubius and A. americanus are exposed and respond to environmental 
stressors equally. Climate change impacts on Ammodytes have been 
reasonably well investigated in the Pacific Northwest (von Biela 
et al., 2019; Robards, Anthony, Rose, & Piatt, 1999; Robards et al., 
2002) and the North Sea (Arnott & Ruxton, 2002; von Biela et al., 
2019; Burthe et al., 2012; Burthe, Wanless, Newell, Butler, & Daunt, 
2014; Wanless et al., 2004, 2018). In contrast, very few studies 
have directly evaluated climate impacts on Ammodytes in the NWA 
(Danielsen et al., 2016; Dixon, Dempson, Sheehan, Renkawitz, & 
Power, 2017). Preliminary evidence suggests A. dubius may be a crit-
ical indicator of climate change and system thresholds. Early-stage 
development appears to be highly sensitive to ocean acidification 
and temperature (Murray et al., 2019) and is likely to affect other 
aspects of life history that influence vulnerability (Hare et al., 2016).

There is strong concern about climate-induced shifts in C. finmar-
chicus distribution in northern areas of the NWA (Record et al., 2019). 
Ammodytes populations that are heavily reliant on Calanus sp. are 
expected to be relatively more vulnerable to changes in availability 
and nutrition, particularly during spring (Friedland et al., 2015; Morse, 
Friedland, Tommasi, Stock, & Nye, 2017; Thomas et al., 2017), and may 
be indicators of shifting ecosystem dynamics and energy transmission 
processes, as has been suggested for the Northeast Pacific congener 

A. personatus (von Biela et al., 2019). Climate-induced changes in the 
distribution and availability of C. finmarchicus could also intensify 
competitive interactions between NWA Ammodytes and planktiv-
orous whales such as the critically endangered North Atlantic right 
whale (Payne et al., 1990). Although orders of magnitude different in 
size, the presence of NWA Ammodytes as well as other forage fishes 
(e.g., herring, mackerel) inhibits their feeding behaviour.

Current management measures, including the possession limit im-
plemented in the Mid-Atlantic region in 2017, and small-mesh and ex-
empted fishery regulations in New England, have likely kept regional 
fishing mortality rates on NWA Ammodytes low; however, their desig-
nation as an unmanaged forage species and absence of a species stock 
assessment has, until recently, precluded the acquisition of basic bio-
logical data, assessments of mortality rates and accurate quantitative 
population assessments. Based on what is known from systems out-
side the NWA (e.g., North Sea), Ammodytes may be highly vulnerable 
to overfishing. The sandy substrates preferred by NWA Ammodytes 
are relatively resilient to physical disturbance (Auster & Langton, 1999) 
and may be repopulated after acute fishing or construction events. 
However, timelines to recovery and further consequences are not well 
understood (Green, 2017; Wanless et al., 2004, 2018). Catches could 
initially remain high, even after repeated fishing attempts in the same 
area, while inflicting long-term impacts, such as increased dispersal and 
exposure to predation as fish relocate in search of undisturbed habitat. 
In addition, if fishing, dredging, sand mining or offshore development 
activities occur during spawning periods, these disturbances could dis-
rupt early life history through damage to eggs laid in/on the substrate.

7  | CONCLUSIONS

This synthesis provides a comprehensive summary of the current 
state of knowledge of Ammodytes populations in the NWA. A diverse 
set of at least 72 species of predators were found to rely on NWA 
Ammodytes as prey. Collectively, these results show that changes in 
the availability and distribution of NWA Ammodytes could affect nu-
merous regional species that are highly valued as commercial fisher-
ies (e.g., bluefin tuna, Atlantic cod), as endangered species (roseate 
terns, Atlantic salmon, Atlantic sturgeon), and iconic wildlife that sup-
port cultural and recreational activities throughout the region (e.g., 
humpback whales, Atlantic puffins). The amassed data are readily 
available to calculate key metrics, populate initial models and facili-
tate broad-scale assessments of NWA Ammodytes, their dependent 
predators, and linked human systems (Smith et al., 2011). Ecosystem 
(e.g., Ecopath with Ecosim, Atlantis) and empirical dynamic models 
are potential tools to explore the connections and consequences of 
previously unresolved community changes (e.g., top-down versus 
bottom-up controls; intraguild competitive relationships) and distur-
bance scenarios (e.g., climate and fishing levels) on NWA Ammodytes 
populations (Glaser et al., 2014; Klein, Glaser, Jordaan, Kaufman, & 
Rosenberg, 2016; Plagányi & Essington, 2014). However, reliable es-
timates from any new research initiatives are dependent on filling the 
remaining data gaps outlined here. Several predator groups require 
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expanded diet data to fully comprehend their dependence on NWA 
Ammodytes, including all marine mammals, adult seabirds, estuarine 
and inshore fish predators, and small pelagic/intraguild competi-
tors. Updated evaluations are also needed to understand ecosystem 
changes occurring during the most recent two decades (2000-pre-
sent) that capture potentially unprecedented changes in trophic inter-
actions due to rapid warming in the region (Saba et al., 2016; Thomas 
et al., 2017). NWA Ammodytes have been consistently abundant and 
were consumed by the greatest diversity of fish predators in the 
Southern New England region, making this an ideal focal area for tar-
geted sampling and analyses of population size structure and related 
changes in predatory demand and energy transfer.

Paramount to resolving almost all of the remaining questions out-
lined in this study is the need for information on the underlying envi-
ronmental and ecological factors driving NWA Ammodytes’ spatial and 
temporal variability over multiple scales. Retrospective analyses of 
the conditions surrounding periods of peak abundance (e.g., the early 
1980s, and around 2010) and at known sites of locally high abundance 
(e.g., Stellwagen Bank) could provide important insights. In addition, new 
data collected from alternative and novel approaches such as hydro-
acoustic surveys (Hazen et al., 2009), geospatial analytical techniques 
(Friedlaender et al., 2009), composite indices and predators as biological 
samplers (Piatt et al., 2018; Richardson et al., 2014) could address verti-
cal and horizontal availability over diel, seasonal and interannual scales. 
Finally, recent (MAFMC, 2017) and pending (Applegate et al., 2019; HR 
2236, 2019) legislation requiring information on the ecosystem role of 
forage fish may provide newfound support for achieving the outstand-
ing research, conservation and management goals for Ammodytes and 
dependent predators in the NWA region.
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