236 research outputs found

    Long-term comparison of the ionospheric F2 layer electron density peak derived from ionosonde data and Formosat-3/COSMIC occultations

    Get PDF
    Electron density profiles (EDPs) derived from GNSS radio occultation (RO) measurements provide valuable information on the vertical electron density structure of the ionosphere and, among others, allow the extraction of key parameters such as the maximum electron density NmF2 and the corresponding peak height hmF2 of the F2 layer. An efficient electron density retrieval method, developed at the UPC (Barcelona, Spain), has been applied in this work to assess the accuracy of NmF2and hmF2 as determined from Formosat-3/COSMIC (F-3/C) radio occultation measurements for a period of more than half a solar cycle between 2006 and 2014. Ionosonde measurements of the Space Physics Interactive Data Resource (SPIDR) network serve as a reference. Investigations on the global trend as well as comparisons of the F2 layer electron density peaks derived from both occultations and ionosonde measurements are carried out. The studies are performed in the global domain and with the distinction of different latitude sectors around the magnetic equator ±[0°, 20°], ±]20°, 60°] and ±]60°, 90°]) and local times (LT) accounting for different ionospheric conditions at night (02:00 LT ± 2 h), dawn (08:00 LT ± 2 h), and day (14:00 LT ± 2 h). The mean differences of F2 layer electron density peaks observed by F-3/C and ionosondes are found to be insignificant. Relative variations of the peak differences are determined in the range of 22%–30% for NmF2 and 10%–15% for hmF2. The consistency of observations is generally high for the equatorial and mid-latitude sectors at daytime and dawn whereas degradations have been detected in the polar regions and during night. It is shown, that the global averages of NmF2 and hmF2 derived from F-3/C occultations appear as excellent indicators for the solar activity.JRC.G.5-Security technology assessmen

    Cryo-Electron Tomography Elucidates the Molecular Architecture of Treponema pallidum, the Syphilis Spirochete

    Get PDF
    Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure’s fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete’s complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator–P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor and enable us to propose that in most spirochetes motility results from rotation of the flagellar filaments against the PG

    Surface nanoscale axial photonics: Robust fabrication of high quality factor microresonators

    Get PDF
    Recently introduced Surface Nanoscale Axial Photonics (SNAP) makes it possible to fabricate high Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate super-accurate fabrication of high Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using the CO2 laser and the UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2 angstroms in variation of the effective fiber radius

    Specificity of emotion sequences in borderline personality disorder compared to posttraumatic stress disorder, bulimia nervosa, and healthy controls: an e-diary study

    Get PDF
    Background: Patients with borderline personality disorder (BPD) exhibit dysregulated emotion sequences in daily life compared to healthy controls (HC). Empirical evidence regarding the specificity of these findings is currently lacking. Methods: To replicate dysregulated emotion sequences in patients with BPD and to investigate the specificity of the sequences, we used e-diaries of 43 female patients with BPD, 28 patients with posttraumatic stress disorder (PTSD), 20 patients with bulimia nervosa (BN), and 28 HC. To capture the rapid dynamics of emotions, we prompted participants every 15 min over a 24-h period to assess their current perceived emotions. We analyzed group differences in terms of activation, persistence, switches, and down-regulation of emotion sequences. Results: By comparing patients with BPD to HC, we replicated five of the seven previously reported dysregulated emotion sequences, as well as 111 out of 113 unaltered sequences. However, none of the previously reported dysregulated emotion sequences exhibited specificity, i.e., none revealed higher frequencies compared to the PTSD group or the BN group. Beyond these findings, we revealed a specific finding for patients with BN, as they most frequently switched from anger to disgust. Conclusions: Replicating previously found dysregulated and unaltered emotional sequences strengthens the significance of emotion sequences. However, the lack of specificity points to emotion sequences as transdiagnostic features

    Functional diversity can facilitate the collapse of an undesirable ecosystem state

    Full text link
    Biodiversity may increase ecosystem resilience. However, we have limited understanding if this holds true for ecosystems that respond to gradual environmental change with abrupt shifts to an alternative state. We used a mathematical model of anoxic–oxic regime shifts and explored how trait diversity in three groups of bacteria influences resilience. We found that trait diversity did not always increase resilience: greater diversity in two of the groups increased but in one group decreased resilience of their preferred ecosystem state. We also found that simultaneous trait diversity in multiple groups often led to reduced or erased diversity effects. Overall, our results suggest that higher diversity can increase resilience but can also promote collapse when diversity occurs in a functional group that negatively influences the state it occurs in. We propose this mechanism as a potential management approach to facilitate the recovery of a desired ecosystem state

    Photoelasticity of crystalline and amorphous silica from first principles

    Full text link
    Based on density-functional perturbation theory we have computed from first principles the photoelastic tensor of few crystalline phases of silica at normal conditions and high pressure (quartz, α\alpha-cristobalite, β\beta-cristobalite) and of models of amorphous silica (containig up to 162 atoms), obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The computational framework has also been checked on the photoelastic tensor of crystalline silicon and MgO as prototypes of covalent and ionic systems. The agreement with available experimental data is good. A phenomenological model suitable to describe the photoelastic properties of different silica polymorphs is devised by fitting on the ab-initio data.Comment: ten figure

    A public domain model for 1D temperature and rheology construction in basement-sedimentary geothermal exploration: an application to the Spanish Central System and adjacent basins

    Get PDF
    Brittle basement and sedimentary rocks, in particular if these are underlain by radiogenic crust, are considered a prime target for enhanced geothermal systems (EGS).They are marked by high geothermal gradients, caused by radiogenic heat production, and are well suited to be used for geothermal doublets after hydraulic stimulation. Critical conditions for successful EGS projects are: (a) tectonic stresses close to failure, allowing creation of induced fractures by means of hydraulic stimulation; (b) sufficient high temperatures [150 C, preferably in excess of 200 C, at depths of less than 5 km; (c) sufficient high water flow rates, to be sustained through induced fractures. For geothermal production, knowledge on thermomechanical properties of the lithosphere provides critical constraints on crustal stresses and basement temperatures. We developed a freely available 1D thermal and rheological model for basement-sedimentary areas. This tool helps to understand variability of deep temperatures, as an effect of uncertainties in thermal and rheological properties and tectonic constraints for the lithosphere, important for assessing geothermal prospectivity. The tool is demonstrated on the Central System in Spain and the adjacent Tajo and Duero basins

    YBa2Cu3O7 and Nb NanoSQUIDs for the Investigation of Magnetization Reversal of Individual Magnetic Nanoparticles

    Get PDF
    We report on the fabrication, performance and application of sensitive YBa2Cu3O7 (YBCO) and Nb nanoSQUIDs to magnetization reversal measurements of individual magnetic nanoparticles. The YBCO SQUIDs are based on grain boundary Josephson junctions and are patterned in a single layer of epitaxially grown YBCO films by Ga focused ion beam milling. The Nb SQUIDs contain sandwich-type Josephson junctions with normal conducting HfTi barriers; they are fabricated with a multilayer technology that includes patterning by e-beam lithography and a combination of milling techniques and chemical-mechanical polishing. Due to the small inductance of the SQUID loops, ultralow white flux noise at 4.2 K can be achieved, which yields spin sensitivities of down to a few Bohr magnetons per unit bandwidth for a magnetic nanoparticle placed at 10 nm distance to the SQUID loop
    corecore