2,284 research outputs found
Scientific explanation and moral explanation
Moral philosophers are, among other things, in the business of constructing moral theories. And moral theories are, among other things, supposed to explain moral phenomena. Consequently, one’s views about the nature of moral explanation will influence the kinds of moral theories one is willing to countenance. Many moral philosophers are (explicitly or implicitly) committed to a deductive model of explanation. As I see it, this commitment lies at the heart of the current debate between moral particularists and moral generalists. In this paper I argue that we have good reasons to give up this commitment. In fact, I show that an examination of the literature on scientific explanation reveals that we are used to, and comfortable with, non-deductive explanations in almost all areas of inquiry. As a result, I argue that we have reason to believe that moral explanations need not be grounded in exceptionless moral principles
Moral deliberation and ad hominem fallacies
Many of us read Peter Singer’s work on our obligations to those in desperate need with our students. Famously, Singer argues that we have a moral obligation to give a significant portion of our assets to famine relief. If my own experience is not atypical, it is quite common for students, upon grasping the implications of Singer’s argument, to ask whether Singer gives to famine relief. In response it might be tempting to remind students of the (so called) ad hominem fallacy of attacking the person advancing an argument rather than the argument itself. In this paper I argue that the “ad hominem reply” to students’ request for information about Singer is misguided. First I show that biographical facts about the person advancing an argument can constitute indirect evidence for the soundness/unsoundness of the argument. Second, I argue that such facts are relevant because they may reveal that one can discard the argument without thereby incurring moral responsibility for failing to act on its conclusion even if the argument is sound
Particularism in Aristotle's Nicomachean Ethics
In this essay I offer a new particularist reading of Aristotle’s Nicomachean Ethics. I argue
that the interpretation I present not only helps us to resolve some puzzles about Aristotle’s goals and
methods, but it also gives rise to a novel account of morality—an account that is both interesting and
plausible in its own right. The goal of this paper is, in part, exegetical—that is, to figure out how to best understand the text of the Nicomachean Ethics. But this paper also aims to contribute to the current
exciting and controversial debate over particularism. By taking the first steps towards a comprehensive
particularist reading of Aristotle’s Ethics I hope to demonstrate that some of the mistrust of
particularism is misplaced and that what is, perhaps, the most influential moral theory in the history of
philosophy is, arguably, a particularist moral theory
Recommended from our members
Transcriptional down-regulation of ccr5 in a subset of HIV+ controllers and their family members.
HIV +Elite and Viremic controllers (EC/VCs) are able to control virus infection, perhaps because of host genetic determinants. We identified 16% (21 of 131) EC/VCs with CD4 +T cells with resistance specific to R5-tropic HIV, reversed after introduction of ccr5. R5 resistance was not observed in macrophages and depended upon the method of T cell activation. CD4 +T cells of these EC/VCs had lower ccr2 and ccr5 RNA levels, reduced CCR2 and CCR5 cell-surface expression, and decreased levels of secreted chemokines. T cells had no changes in chemokine receptor mRNA half-life but instead had lower levels of active transcription of ccr2 and ccr5, despite having more accessible chromatin by ATAC-seq. Other nearby genes were also down-regulated, over a region of ~500 kb on chromosome 3p21. This same R5 resistance phenotype was observed in family members of an index VC, also associated with ccr2/ccr5 down-regulation, suggesting that the phenotype is heritable
Deep infrared observations of the puzzling central X-ray source in RCW103
1E 161348-5055 (1E 1613) is a point-like, soft X-ray source originally
identified as a radio-quiet, isolated neutron star, shining at the center of
the 2000 yr old supernova remnant RCW103. 1E 1613 features a puzzling 6.67 hour
periodicity as well as a dramatic variability over a time scale of few years.
Such a temporal behavior, coupled to the young age and to the lack of an
obvious optical counterpart, makes 1E 1613 a unique source among all compact
objects associated to SNRs. It could either be the first low-mass X-ray binary
system discovered inside a SNR, or a peculiar isolated magnetar with an
extremely slow spin period. Analysis of archival IR observations, performed in
2001 with the VLT/ISAAC instrument, and in 2002 with the NICMOS camera onboard
HST unveils a very crowded field. A few sources are positionally consistent
with the refined X-ray error region that we derived from the analysis of 13
Chandra observations. To shed light on the nature of 1E 1613, we have performed
deep IR observations of the field with the NACO instrument at the ESO/VLT,
searching for variability. We find no compelling reasons to associate any of
the candidates to 1E 1613. On one side, within the frame of the binary system
model for the X-ray source, it is very unlikely that one of the candidates be a
low-mass companion star to 1E 1613. On the other side, if the X-ray source is
an isolated magnetar surrounded by a fallback disc, we cannot exclude that the
IR counterpart be hidden among the candidates. If none of the potential
counterparts is linked to the X-ray source, 1E 1613 would remain undetected in
the IR down to Ks>22.1. Such an upper limit is consistent only with an
extremely low-mass star (an M6-M8 dwarf) at the position of 1E 1613, and makes
rather problematic the interpretation of 1E 1613 as an accreting binary system.Comment: 26 pages, 5 figures. Accepted for publication in Ap
Null Geodesics in Five Dimensional Manifolds
We analyze a class of 5D non-compact warped-product spaces characterized by
metrics that depend on the extra coordinate via a conformal factor. Our model
is closely related to the so-called canonical coordinate gauge of Mashhoon et
al. We confirm that if the 5D manifold in our model is Ricci-flat, then there
is an induced cosmological constant in the 4D sub-manifold. We derive the
general form of the 5D Killing vectors and relate them to the 4D Killing
vectors of the embedded spacetime. We then study the 5D null geodesic paths and
show that the 4D part of the motion can be timelike -- that is, massless
particles in 5D can be massive in 4D. We find that if the null trajectories are
affinely parameterized in 5D, then the particle is subject to an anomalous
acceleration or fifth force. However, this force may be removed by
reparameterization, which brings the correct definition of the proper time into
question. Physical properties of the geodesics -- such as rest mass variations
induced by a variable cosmological ``constant'', constants of the motion and 5D
time-dilation effects -- are discussed and are shown to be open to experimental
or observational investigation.Comment: 19 pages, REVTeX, in press in Gen. Rel. Gra
Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234
We present the analysis of a total of 177h of high-quality optical
time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC
20058-5234. The bulk of the observations (135h) were obtained during a WET
campaign (XCOV15) in July 1997 that featured coordinated observing from 4
southern observatory sites over an 8-day period. The remaining data (42h) were
obtained in June 2004 at Mt John Observatory in NZ over a one-week observing
period. This work significantly extends the discovery observations of this
low-amplitude (few percent) pulsator by increasing the number of detected
frequencies from 8 to 18, and employs a simulation procedure to confirm the
reality of these frequencies to a high level of significance (1 in 1000). The
nature of the observed pulsation spectrum precludes identification of unique
pulsation mode properties using any clearly discernable trends. However, we
have used a global modelling procedure employing genetic algorithm techniques
to identify the n, l values of 8 pulsation modes, and thereby obtain
asteroseismic measurements of several model parameters, including the stellar
mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those
derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We
also present persuasive evidence from apparent rotational mode splitting for
two of the modes that indicates this compact object is a relatively rapid
rotator with a period of 2h. In direct analogy with the corresponding
properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude
pulsation behaviour of EC 20058 is entirely consistent with its inferred
effective temperature, which indicates it is close to the blue edge of the DBV
instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte
Identification of the Mass Donor Star's Spectrum in SS 433
We present spectroscopy of the microquasar SS 433 obtained near primary
eclipse and disk precessional phase Psi = 0.0, when the accretion disk is
expected to be most ``face-on''. The likelihood of observing the spectrum of
the mass donor is maximized at this combination of orbital and precessional
phases since the donor is in the foreground and above the extended disk
believed to be present in the system. The spectra were obtained over four
different runs centered on these special phases. The blue spectra show clear
evidence of absorption features consistent with a classification of A3-7 I. The
behavior of the observed lines indicates an origin in the mass donor. The
observed radial velocity variations are in anti-phase to the disk, the
absorption lines strengthen at mid-eclipse when the donor star is expected to
contribute its maximum percentage of the total flux, and the line widths are
consistent with lines created in an A supergiant photosphere. We discuss and
cast doubt on the possibility that these lines represent a shell spectrum
rather than the mass donor itself. We re-evaluate the mass ratio of the system
and derive masses of 10.9 +/- 3.1 Msun and 2.9 +/- 0.7 Msun for the mass donor
and compact object plus disk, respectively. We suggest that the compact object
is a low mass black hole.
In addition, we review the behavior of the observed emission lines from both
the disk/wind and high velocity jets.Comment: submitted to ApJ, 24 pages, 7 figure
The detailed optical light curve of GRB 030329
(Abridged) We present densely sampled BVRI light curves of the optical
transient associated with the gamma-ray burst GRB 030329, the result of a
coordinated observing campaign conducted at five observatories. Augmented with
published observations of this GRB, the compiled optical dataset contains 2687
photometric measurements, obtained between 78 minutes and 79 days after the
burst. We show that the underlying supernova 2003dh evolved faster than, and
was probably somewhat fainter than the type Ic SN 1998bw, associated with GRB
980425. We find that our data can be described by a broken power-law decay
perturbed by a complex variable component. The early- and late-time decay
slopes are determined to be ~1.1 and ~2, respectively. Assuming this single
power-law model, we constrain the break to lie between ~3 and ~8 days after the
burst. This simple, singly-broken power-law model, derived only from the
analysis of our optical observations, may also account for available multi-band
data, provided that the break happened ~8 days after the burst. The more
complex double-jet model of Berger et al. provides a comparable fit to the
optical, X-ray, mm and radio observations of this event. We detect a
significant change in optical colors during the first day. Our color analysis
is consistent with a cooling break frequency sweeping through the optical band
during the first day. The light curves of GRB 030329 reveal a rich array of
variations, superposed over the mean power-law decay. We find that the early
variations are asymmetric, with a steep rise followed by a relatively slower
(by a factor of about two) decline. The variations maintain a similar time
scale during the first four days, and then get significantly longer.Comment: 14 pages, 12 figures, accepted for publication in ApJ with minor
changes. See the GRB030329 Data Treasury at
http://wise-obs.tau.ac.il/GRB030329
- …
