11,765 research outputs found

    M51 ULX-7: superorbital periodicity and constraints on the neutron star magnetic field

    Get PDF
    In this work, we explore the applicability of standard theoretical models of accretion to the observed properties of M51 ULX-7. The spin-up rate and observed X-ray luminosity are evidence of a neutron star with a surface magnetic field of 2-7 x 10(13) G, rotating near equilibrium. Analysis of the X-ray light curve of the system (Swift/XRT data) reveals the presence of a similar to 39 d superorbital period. We argue that the superorbital periodicity is due to disc precession, and that material is accreted on to the neutron star at a constant rate throughout it. Moreover, by attributing this modulation to the free precession of the neutron star we estimate a surface magnetic field strength of 3-4 x 10(13) G. The agreement of these two independent estimates provide strong constraints on the surface polar magnetic field strength of the NS

    Are there any stable magnetic fields in barotropic stars?

    Full text link
    We construct barotropic stellar equilibria, containing magnetic fields with both poloidal and toroidal field components. We extend earlier results by exploring the effect of different magnetic field and current distributions. Our results suggest that the boundary treatment plays a major role in whether the poloidal or toroidal field component is globally dominant. Using time evolutions we provide the first stability test for mixed poloidal-toroidal fields in barotropic stars, finding that all these fields suffer instabilities due to one of the field components: these are localised around the pole for toroidal-dominated equilibria and in the closed-field line region for poloidal-dominated equilibria. Rotation provides only partial stabilisation. There appears to be very limited scope for the existence of stable magnetic fields in barotropic stars. We discuss what additional physics from real stars may allow for stable fields.Comment: 16 pages, 11 figures. Some minor revision from v1, including a new figure; results unchanged. Now published in MNRA

    The 'stem cell' concept: is it holding us back?

    Get PDF
    Developmental biology, regenerative medicine and cancer biology are increasingly occupied with the molecular characterization of stem cells. Yet recent work adds to a growing body of literature suggesting that 'stemness' cannot be reduced to the molecular features of cell types, and is instead an emergent property of cell lineages under feedback control

    Hierarchical Lattice Models of Hydrogen Bond Networks in Water

    Full text link
    We develop a graph-based model of the hydrogen bond network in water, with a view towards quantitatively modeling the molecular-level correlational structure of the network. The networks are formed are studied by the constructing the model on two infinite-dimensional lattices. Our models are built \emph{bottom up}, based on microscopic information coming from atomistic simulations, and we show that the predictions of the model are consistent with known results from ab-initio simulations of liquid water. We show that simple entropic models can predict the correlations and clustering of local-coordination defects around tetrahedral waters observed in the atomistic simulations. We also find that orientational correlations between bonds are longer ranged than density correlations, and determine the directional correlations within closed loops and show that the patterns of water wires within these structures are also consistent with previous atomistic simulations. Our models show the existence of density and compressibility anomalies, as seen in the real liquid, and the phase diagram of these models is consistent with the singularity-free scenario previously proposed by Sastry and co-workers (Sastry et al, PRE 53, 6144 (1996)).Comment: 17 pages, published versio

    Magnetar birth: rotation rates and gravitational-wave emission

    Get PDF
    Understanding the evolution of the angle χ between a magnetar's rotation and magnetic axes sheds light on the star's birth properties. This evolution is coupled with that of the stellar rotation ω, and depends on the competing effects of internal viscous dissipation and external torques. We study this coupled evolution for a model magnetar with a strong internal toroidal field, extending previous work by modelling-for the first time in this context-the strong protomagnetar wind acting shortly after birth. We also account for the effect of buoyancy forces on viscous dissipation at late times. Typically, we find that χ → 90° shortly after birth, then decreases towards 0° over hundreds of years. From observational indications that magnetars typically have small χ, we infer that these stars are subject to a stronger average exterior torque than radio pulsars, and that they were born spinning faster than ∼100-300 Hz. Our results allow us to make quantitative predictions for the gravitational and electromagnetic signals from a newborn rotating magnetar. We also comment briefly on the possible connection with periodic fast radio burst sources

    Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction

    Get PDF
    This paper reports experiments investigating the reaction of H2_{2} with uranium metal-oxide bilayers. The bilayers consist of \leq 100 nm of epitaxial α\alpha-U (grown on a Nb buffer deposited on sapphire) with a UO2_{2} overlayer of thicknesses of between 20 and 80 nm. The oxides were made either by depositing via reactive magnetron sputtering, or allowing the uranium metal to oxidise in air at room temperature. The bilayers were exposed to hydrogen, with sample temperatures between 80 and 200 C, and monitored via in-situ x-ray diffraction and complimentary experiments conducted using Scanning Transmission Electron Microscopy - Electron Energy Loss Spectroscopy (STEM-EELS). Small partial pressures of H2_{2} caused rapid consumption of the U metal and lead to changes in the intensity and position of the diffraction peaks from both the UO2_{2} overlayers and the U metal. There is an orientational dependence in the rate of U consumption. From changes in the lattice parameter we deduce that hydrogen enters both the oxide and metal layers, contracting the oxide and expanding the metal. The air-grown oxide overlayers appear to hinder the H2_{2}-reaction up to a threshold dose, but then on heating from 80 to 140 C the consumption is more rapid than for the as-deposited overlayers. STEM-EELS establishes that the U-hydride layer lies at the oxide-metal interface, and that the initial formation is at defects or grain boundaries, and involves the formation of amorphous and/or nanocrystalline UH3_{3}. This explains why no diffraction peaks from UH3_{3} are observed. {\textcopyright British Crown Owned Copyright 2017/AWE}Comment: Submitted for peer revie

    Magnetization of Charge-ordered la(2-x)sr(x)nio(4+delta)

    Full text link
    We report magnetization measurements on La(2-x)Sr(x)NiO(4+ delta) single crystals, with 0 < x < 0.5. Glassy behaviour associated with the formation of spin-charge stripes, and a separate spin-glass phase at low temperatures were observed. We have also found a `memory effect' in the magnetic field -- temperature history, which is found to be suppressed in the low temperature spin state of the x = 0.33 crystal.Comment: 2 pages, 2 figures. Presented at ICM2003 to appear in J. Magn. Magn. Mat

    Effective Confinement as Origin of the Equivalence of Kinetic Temperature and Fluctuation-Dissipation Ratio in a Dense Shear Driven Suspension

    Full text link
    We study response and velocity autocorrelation functions for a tagged particle in a shear driven suspension governed by underdamped stochastic dynamics. We follow the idea of an effective confinement in dense suspensions and exploit a time-scale separation between particle reorganization and vibrational motion. This allows us to approximately derive the fluctuation-dissipation theorem in a "hybrid" form involving the kinetic temperature as an effective temperature and an additive correction term. We show numerically that even in a moderately dense suspension the latter is negligible. We discuss similarities and differences with a simple toy model, a single trapped particle in shear flow
    corecore