314 research outputs found
Ballistic transport in disordered graphene
An analytic theory of electron transport in disordered graphene in a
ballistic geometry is developed. We consider a sample of a large width W and
analyze the evolution of the conductance, the shot noise, and the full
statistics of the charge transfer with increasing length L, both at the Dirac
point and at a finite gate voltage. The transfer matrix approach combined with
the disorder perturbation theory and the renormalization group is used. We also
discuss the crossover to the diffusive regime and construct a ``phase diagram''
of various transport regimes in graphene.Comment: 23 pages, 10 figure
Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite
We studied the (001/2) diffraction peak in the low-temperature phase of
magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3
and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin
films and in-situ cleaved single crystals. From the comparison we have been
able to determine quantitatively the contribution of intrinsic absorption
effects, thereby arriving at a consistent result for the (001/2) diffraction
peak spectrum. Our data also allow for the identification of extrinsic effects,
e.g. for a detailed modeling of the spectra in case a "dead" surface layer is
present that is only absorbing photons but does not contribute to the
scattering signal.Comment: to appear in Phys. Rev.
Charge transport in graphene with resonant scatterers
The full counting statistics for the charge transport through an undoped
graphene sheet in the presence of strong potential impurities is studied.
Treating the scattering off the impurity in the s-wave approximation, we
calculate the impurity correction to the cumulant generating function. This
correction is universal provided the impurity strength is tuned to a resonant
value. In particular, the conductance of the sample acquires a correction of
16e^2/(pi^2 h) per resonant impurity.Comment: 11 pages, 6 figures; published version, appendix with technical
details adde
Ballistic charge transport in chiral-symmetric few-layer graphene
A transfer matrix approach to study ballistic charge transport in few-layer
graphene with chiral-symmetric stacking configurations is developed. We
demonstrate that the chiral symmetry justifies a non-Abelian gauge
transformation at the spectral degeneracy point (zero energy). This
transformation proves the equivalence of zero-energy transport properties of
the multilayer to those of the system of uncoupled monolayers. Similar
transformation can be applied in order to gauge away an arbitrary magnetic
field, weak strain, and hopping disorder in the bulk of the sample. Finally, we
calculate the full-counting statistics at arbitrary energy for different
stacking configurations. The predicted gate-voltage dependence of conductance
and noise can be measured in clean multilayer samples with generic metallic
leads.Comment: 6 pages, 5 figures; EPL published versio
Astrometric Methods and Instrumentation to Identify and Characterize Extrasolar Planets: A Review
I present a review of astrometric techniques and instrumentation utilized to
search for, detect, and characterize extra-solar planets. First, I briefly
summarize the properties of the present-day sample of extrasolar planets, in
connection with predictions from theoretical models of planet formation and
evolution. Next, the generic approach to planet detection with astrometry is
described, with significant discussion of a variety of technical, statistical,
and astrophysical issues to be faced by future ground-based as well as
space-borne efforts in order to achieve the required degree of measurement
precision. After a brief summary of past and present efforts to detect planets
via milli-arcsecond astrometry, I then discuss the planet-finding capabilities
of future astrometric observatories aiming at micro-arcsecond precision.
Lastly, I outline a number experiments that can be conducted by means of
high-precision astrometry during the next decade, to illustrate its potential
for important contributions to planetary science, in comparison with other
indirect and direct methods for the detection and characterization of planetary
systems.Comment: 61 pages, 8 figures, PASP, accepted (October 2005 issue
Isotope shift in the electron affinity of chlorine
The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl
has been determined by tunable laser photodetachment spectroscopy to be
-0.51(14) GHz. The isotope shift was observed as a difference in the onset of
the photodetachment process for the two isotopes. In addition, the electron
affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2
improvement in the accuracy over earlier measurements. Many-body calculations
including lowest-order correlation effects demonstrates the sensitivity of the
specific mass shift and show that the inclusion of higher-order correlation
effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat
Mycobacterium tuberculosis ClpP Proteases Are Co-transcribed but Exhibit Different Substrate Specificities
PMCID: PMC3613350This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Pre-emptive and therapeutic adoptive immunotherapy for nasopharyngeal carcinoma: Phenotype and effector function of T cells impact on clinical response
published_or_final_versio
Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope
The ANTARES telescope is well-suited for detecting astrophysical transient
neutrino sources as it can observe a full hemisphere of the sky at all times
with a high duty cycle. The background due to atmospheric particles can be
drastically reduced, and the point-source sensitivity improved, by selecting a
narrow time window around possible neutrino production periods. Blazars, being
radio-loud active galactic nuclei with their jets pointing almost directly
towards the observer, are particularly attractive potential neutrino point
sources, since they are among the most likely sources of the very high-energy
cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions
with the surrounding medium. Moreover, blazars generally show high time
variability in their light curves at different wavelengths and on various time
scales. This paper presents a time-dependent analysis applied to a selection of
flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV
Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012.
The results are compatible with fluctuations of the background. Upper limits on
the neutrino fluence have been produced and compared to the measured gamma-ray
spectral energy distribution.Comment: 27 pages, 16 figure
- …