A transfer matrix approach to study ballistic charge transport in few-layer
graphene with chiral-symmetric stacking configurations is developed. We
demonstrate that the chiral symmetry justifies a non-Abelian gauge
transformation at the spectral degeneracy point (zero energy). This
transformation proves the equivalence of zero-energy transport properties of
the multilayer to those of the system of uncoupled monolayers. Similar
transformation can be applied in order to gauge away an arbitrary magnetic
field, weak strain, and hopping disorder in the bulk of the sample. Finally, we
calculate the full-counting statistics at arbitrary energy for different
stacking configurations. The predicted gate-voltage dependence of conductance
and noise can be measured in clean multilayer samples with generic metallic
leads.Comment: 6 pages, 5 figures; EPL published versio