8,886 research outputs found
Recommended from our members
Possible immunoenhancement of persistent viremia by feline leukemia virus envelope glycoprotein vaccines in challenge-exposure situations where whole inactivated virus vaccines were protective.
Kittens immunized with purified native FeLV-gp70 or -gp85 envelope proteins developed ELISA, but not virus neutralizing, antibodies in their serum to both whole FeLV and FeLV-gp70. Kittens vaccinated with envelope proteins and infected with feline sarcoma virus (FeSV) developed smaller tumors than nonvaccinates, but a greater incidence of persistent retroviremia. Similarly, FeLV-gp70 and -gp85 vaccinated kittens were more apt to become persistently retroviremic following virulent FeLV challenge exposure than nonvaccinates. Kittens vaccinated with inactivated whole FeLV developed smaller tumors after FeSV inoculation and had a lower incidence of persistent retroviremia than nonvaccinates. The protective effect of inactivated whole FeLV vaccine against persistent retroviremia was also seen with FeLV challenge-exposed cats. Protection afforded by inactivated whole FeLV vaccine was not associated with virus neutralizing antibodies, although ELISA antibodies to both whole FeLV and FeLV-gp70 were induced by vaccination
SDO/HMI survey of emerging active regions for helioseismology
Observations from the Solar Dynamics Observatory (SDO) have the potential for
allowing the helioseismic study of the formation of hundreds of active regions,
which would enable us to perform statistical analyses. Our goal is to collate a
uniform data set of emerging active regions observed by the SDO/HMI instrument
suitable for helioseismic analysis up to seven days before emergence. We
restricted the sample to active regions that were visible in the continuum and
emerged into quiet Sun largely avoiding pre-existing magnetic regions. As a
reference data set we paired a control region (CR), with the same latitude and
distance from central meridian, with each emerging active region (EAR). We call
this data set, which is currently comprised of 105 emerging active regions
observed between May 2010 and November 2012, the SDO Helioseismic Emerging
Active Region (SDO/HEAR) survey. To demonstrate the utility of a data set of a
large number of emerging active regions, we measure the relative east-west
velocity of the leading and trailing polarities from the line-of-sight
magnetogram maps during the first day after emergence. The latitudinally
averaged line-of-sight magnetic field of all the EARs shows that, on average,
the leading (trailing) polarity moves in a prograde (retrograde) direction with
a speed of 121 +/- 22 m/s (-70 +/- 13 m/s) relative to the Carrington rotation
rate in the first day. However, relative to the differential rotation of the
surface plasma, the east-west velocity is symmetric, with a mean of 95 +/- 13
m/s. The SDO/HEAR data set will not only be useful for helioseismic studies,
but will also be useful to study other features such as the surface magnetic
field evolution of a large sample of EARs.Comment: Accepted by Astronomy and Astrophysics, 11 figures, one longtable;
update corrects units in Figure
Reconstruction of Solar Subsurfaces by Local Helioseismology
Local helioseismology has opened new frontiers in our quest for understanding
of the internal dynamics and dynamo on the Sun. Local helioseismology
reconstructs subsurface structures and flows by extracting coherent signals of
acoustic waves traveling through the interior and carrying information about
subsurface perturbations and flows, from stochastic oscillations observed on
the surface. The initial analysis of the subsurface flow maps reconstructed
from the 5 years of SDO/HMI data by time-distance helioseismology reveals the
great potential for studying and understanding of the dynamics of the quiet Sun
and active regions, and the evolution with the solar cycle. In particular, our
results show that the emergence and evolution of active regions are accompanied
by multi-scale flow patterns, and that the meridional flows display the
North-South asymmetry closely correlating with the magnetic activity. The
latitudinal variations of the meridional circulation speed, which are probably
related to the large-scale converging flows, are mostly confined in shallow
subsurface layers. Therefore, these variations do not necessarily affect the
magnetic flux transport. The North-South asymmetry is also pronounced in the
variations of the differential rotation ("torsional oscillations"). The
calculations of a proxy of the subsurface kinetic helicity density show that
the helicity does not vary during the solar cycle, and that supergranulation is
a likely source of the near-surface helicity.Comment: 17 pages, 10 figures, in "Cartography of the Sun and the Stars",
Editors: Rozelot, Jean-Pierre, Neiner, Corali
Astrophysical implications of hypothetical stable TeV-scale black holes
We analyze macroscopic effects of TeV-scale black holes, such as could
possibly be produced at the LHC, in what is regarded as an extremely
hypothetical scenario in which they are stable and, if trapped inside Earth,
begin to accrete matter. We examine a wide variety of TeV-scale gravity
scenarios, basing the resulting accretion models on first-principles, basic,
and well-tested physical laws. These scenarios fall into two classes, depending
on whether accretion could have any macroscopic effect on the Earth at times
shorter than the Sun's natural lifetime. We argue that cases with such effect
at shorter times than the solar lifetime are ruled out, since in these
scenarios black holes produced by cosmic rays impinging on much denser white
dwarfs and neutron stars would then catalyze their decay on timescales
incompatible with their known lifetimes. We also comment on relevant lifetimes
for astronomical objects that capture primordial black holes. In short, this
study finds no basis for concerns that TeV-scale black holes from the LHC could
pose a risk to Earth on time scales shorter than the Earth's natural lifetime.
Indeed, conservative arguments based on detailed calculations and the
best-available scientific knowledge, including solid astronomical data,
conclude, from multiple perspectives, that there is no risk of any significance
whatsoever from such black holes.Comment: Version2: Minor corrections/fixed typos; updated reference
Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb
We demonstrate a technique for frequency measurements of UV transitions with
sub-MHz precision. The frequency is measured using a ring-cavity resonator
whose length is calibrated against a reference laser locked to the line
of Rb. We have used this to measure the 398.8 nm line of atomic Yb. We report isotope shifts of all the
seven stable isotopes, including the rarest isotope Yb. We have been
able to resolve the overlapping Yb() and Yb
transitions for the first time. We also obtain high-precision measurements of
excited-state hyperfine structure in the odd isotopes, Yb and
Yb. The measurements resolve several discrepancies among earlier
measurements.Comment: 7 pages, 6 figure
Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons
Tendons can broadly be categorized according to their function: those that act purely to position the limb and those that have an additional function as energy stores. Energy-storing tendons undergo many cycles of large deformations during locomotion, and so must be able to extend and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response to applied strain in fascicles from energy-storing tendons, indicating the presence of helical substructures which may provide greater elasticity and recovery. In the current study, we assessed how preconditioning and fatigue loading affect the ability of fascicles from the energy-storing equine superficial digital flexor tendon to extend and recoil. We hypothesized that preconditioned samples would exhibit changes in microstructural strain response, but would retain their ability to recover. We further hypothesized that fatigue loading would result in sample damage, causing further alterations in extension mechanisms and a significant reduction in sample recovery. The results broadly support these hypotheses: preconditioned samples showed some alterations in microstructural strain response, but were able to recover following the removal of load. However, fatigue loaded samples showed visual evidence of damage and exhibited further alterations in extension mechanisms, characterized by decreased rotation in response to applied strain. This was accompanied by increased hysteresis and decreased recovery. These results suggest that fatigue loading results in a compromised helix substructure, reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to an impaired response to further loading, potentially increasing the likelihood of injury
A first-principles comparison of the electronic properties of MgC_{y}Ni_{3} and ZnC_{y}Ni_{3} alloys
First-principles, density-functional-based electronic structure calculations
are employed to study the changes in the electronic properties of ZnC_{y}Ni_{3}
and MgC_{y}Ni_{3} using the Korringa-Kohn-Rostoker coherent-potential
approximation method in the atomic sphere approximation (KKR-ASA CPA). As a
function of decreasing C at%, we find a steady decrease in the lattice constant
and bulk modulus in either alloys. However, the pressure derivative of the bulk
modulus displays an opposite trend. Following the Debye model, which relates
the pressure derivative of the bulk modulus with the average phonon frequency
of the crystal, it can thus be argued that ZnCNi_{3} and its disordered alloys
posses a different phonon spectra in comparison to its MgCNi_{3} counterparts.
This is further justified by the marked similarity we find in the electronic
structure properties such as the variation in the density of states and the
Hopfield parameters calculated for these alloys. The effects on the equation of
state parameters and the density of states at the Fermi energy, for partial
replacement of Mg by Zn are also discussed.Comment: 19 pages, 15 figure
Time--Distance Helioseismology Data Analysis Pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and Its Initial Results
The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory
(SDO/HMI) provides continuous full-disk observations of solar oscillations. We
develop a data-analysis pipeline based on the time-distance helioseismology
method to measure acoustic travel times using HMI Doppler-shift observations,
and infer solar interior properties by inverting these measurements. The
pipeline is used for routine production of near-real-time full-disk maps of
subsurface wave-speed perturbations and horizontal flow velocities for depths
ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic
maps for the subsurface properties are made from these full-disk maps. The
pipeline can also be used for selected target areas and time periods. We
explain details of the pipeline organization and procedures, including
processing of the HMI Doppler observations, measurements of the travel times,
inversions, and constructions of the full-disk and synoptic maps. Some initial
results from the pipeline, including full-disk flow maps, sunspot subsurface
flow fields, and the interior rotation and meridional flow speeds, are
presented.Comment: Accepted by Solar Physics topical issue 'Solar Dynamics Observatory
Distributed expertise: Qualitative study of a British network of multidisciplinary teams supporting parents of children with chronic kidney disease
© 2014 The Authors. Background: Long-term childhood conditions are often managed by hospital-based multidisciplinary teams (MDTs) of professionals with discipline specific expertise of a condition, in partnership with parents. However, little evidence exists on professional-parent interactions in this context. An exploration of professionals' accounts of the way they individually and collectively teach parents to manage their child's clinical care at home is, therefore, important for meeting parents' needs, informing policy and educating novice professionals. Using chronic kidney disease as an exemplar this paper reports on one aspect of a study of interactions between professionals and parents in a network of 12 children's kidney units in Britain. Methods: We conducted semi-structured, qualitative interviews with a convenience sample of 112 professionals (clinical-psychologists, dietitians, doctors, nurses, pharmacists, play-workers, therapists and social workers), exploring accounts of their parent-educative activity. We analysed data using framework and the concept of distributed expertise. Results: Four themes emerged that related to the way expertise was distributed within and across teams: (i) recognizing each other's' expertise, (ii) sharing expertise within the MDT, (iii) language interpretation, and (iv) acting as brokers. Two different professional identifications were also seen to co-exist within MDTs, with participants using the term 'we' both as the intra-professional 'we' (relating to the professional identity) when describing expertise within a disciplinary group (for example: 'As dietitians we aim to give tailored advice to optimize children's growth'), and the inter-professional 'we' (a 'team-identification'), when discussing expertise within the team (for example: 'We work as a team and make sure we're all happy with every aspect of their training before they go home'). Conclusions: This study highlights the dual identifications implicit in 'being professional' in this context (to the team and to one's profession) as well as the unique role that each member of a team contributes to children's care. Our methodology and results have the potential to be transferred to teams managing other conditions
A new constant-pressure molecular dynamics method for finite system
In this letter, by writing the volume as a function of coordinates of atoms,
we present a new constant-pressure molecular dynamics method with parameters
free. This method is specially appropriate for the finite system in which the
periodic boundary condition does not exist. Simulations on the carbon nanotube
and the Ni nanoparticle clearly demonstrate the validity of the method. By
using this method, one can easily obtain the equation of states for the finite
system under the external pressure.Comment: RevTex, 5 pages, 3 figures, submitted to Phys. Rev. Let
- …
