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We analyze macroscopic effects of TeV-scale black holes, such as could possibly be produced at the

LHC, in what is regarded as an extremely hypothetical scenario in which they are stable and, if trapped

inside Earth, begin to accrete matter. We examine a wide variety of TeV-scale gravity scenarios, basing the

resulting accretion models on first-principles, basic, and well-tested physical laws. These scenarios fall

into two classes, depending on whether accretion could have any macroscopic effect on the Earth at times

shorter than the Sun’s natural lifetime. We argue that cases with such an effect at shorter times than the

solar lifetime are ruled out, since in these scenarios black holes produced by cosmic rays impinging on

much denser white dwarfs and neutron stars would then catalyze their decay on time scales incompatible

with their known lifetimes. We also comment on relevant lifetimes for astronomical objects that capture

primordial black holes. In short, this study finds no basis for concerns that TeV-scale black holes from the

LHC could pose a risk to Earth on time scales shorter than the Earth’s natural lifetime. Indeed, con-

servative arguments based on detailed calculations and the best-available scientific knowledge, including

solid astronomical data, conclude, from multiple perspectives, that there is no risk of any significance

whatsoever from such black holes.
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I. INTRODUCTION

One of the most spectacular manifestations of nature
realizing certain extra-dimensional scenarios [1–4] could
be the production of microscopic black holes at the LHC
[5,6].1 These are expected to undergo prompt, quasither-
mal, Hawking [9] decay to large multiplicities of elemen-
tary particles, leading to very characteristic final states. It
has been suggested [10,11], however, that black hole decay
via Hawking radiation may not be a universal feature, and
could, for example, depend on the details of the Planck-
scale degrees of freedom. While this suggestion is not
based on any complete microphysical picture, and further-
more appears contradictory to basic quantum-mechanical
principles2, it does raise a possible question about stability
of microscopic black holes that might be produced at the
LHC, in TeV-scale gravity scenarios. This in turn has led
some to express concern about the fate of their evolution:
could their accretion pose any threat to the Earth? This is
the question addressed in this paper.

The structure of this work, and a succinct summary of
our findings, are outlined here. We begin our work by re-
viewing what are widely regarded as quite convincing ar-
guments for the robustness of the exceedingly rapid decay
of microscopic black holes. We then discuss the arguments
asserting that macroscopic consequences of new and un-
known particles can be ruled out by the lack of evidence for

their effects from production by cosmic rays hitting the
surface of the Earth or other astronomical bodies. We argue
here that charged black holes will lose enough energy to
stop when traversing the Earth or the Sun, via standard
electromagnetic processes. Since black holes would be
typically produced by the collision of quark pairs, whether
in cosmic-ray interactions or at the LHC, they would often
be initially charged. To the extent that no mechanism leads
to their neutralization, the cosmic-ray based argument for
their being harmless is therefore robust. Their neutraliza-
tion through the Schwinger mechanism proceeds accord-
ing to quantum principles like those underlying Hawking
radiation. There is therefore no concrete framework where
neutralization occurs without Hawking decay taking place
as well, leading to a likely contradiction in assuming that
stable black holes must be neutral. We nonetheless make
the hypothesis that this odd situation could occur, and
analyze the possible effects of such neutral and stable black
holes, beginning with a review of some essential features
of gravity and black holes in D> 4 dimensions, including
both large- and warped-extra-dimensions models.
Next, we develop the formalism to describe the evolu-

tion of such black holes trapped inside the Earth or inside
dense objects such as white dwarfs and neutron stars. We
introduce and discuss accretion scenarios that apply within
nuclear, atomic, and macroscopic matter, evaluating the
time scales corresponding to various phases in the evolu-
tion of a growing black hole. We establish upper and lower
limits to the rate at which accretion can take place, building
on very basic principles such as conservation laws and
classical and quantum dynamics. This is possible since,
in order for accretion to become macroscopic, it is neces-
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sary that a black hole exerts its influence over distance
scales much larger than its event horizon. Such black holes
are very small, and their accretion power, if limited to
absorbing particles that have impact parameters of the
order of the Schwarzschild radius, is typically insufficient
to cause macroscopic growth. At large distances the physi-
cal processes become independent of the short-distance
properties of the black hole, which only acts through its
attractive potential, and as a mass sink. In this long-
distance domain, classical or quantum dynamics are well
tested, making the study of accretion possible, indepen-
dently of our detailed knowledge or ignorance about the
physics inside the black hole.

We investigate two concrete scenarios, for various con-
figurations of the extra dimensions: growth of hypothetical
LHC-produced stable black holes within the Earth, and
growth of such black holes produced by cosmic rays
impinging on dense stars, such as white dwarfs or neutron
stars. In both cases, we make conservative assumptions,
namely, fastest possible growth in Earth, and slowest pos-
sible growth in a dense star. The first scenario shows that, if
the radius of crossover from higher-dimensional gravity to

four-dimensional gravity is less than about 200 �A, the
natural lifetime of the solar system is too short to allow
significant growth of stable black holes that may be cap-
tured inside the Earth. In contrast, in a scenario where the

crossover radius exceeds the 200 �A scale, accretion times
could be shorter than the solar time scale. In this case,
however, examination of the latter dense-star scenario then
produces an argument that, given observational data setting
the lifetimes of such objects at 109 yr or more, such stable
black holes cannot in fact exist for a crossover radius

greater than ’ 15 �A.
These arguments thus conclude with the exclusion of

any relevant consequences for Earth due to the evolution of
black holes possibly produced by the LHC.

While the main line of the argument is relatively
straightforward, being based on well-established macro-
scopic properties of matter, several issues require an in-
depth study in order to provide a robust basis to our con-
clusions. When studying accretion, for example, we need
to consider the possibility of effects such as the Eddington
limit, where radiation emitted during the infall of matter
would slow down the accretion via radiative pressure,
constraining the accretion rate of a black hole and thus
possibly slowing down its growth inside Earth or a dense
star. The estimates of the number of black holes produced
by cosmic rays need to rely on a solid understanding of the
latter’s spectra and composition. Here we therefore con-
sider the worse-case scenarios where, contrary to mounting
experimental evidence, the cosmic primaries are domi-
nantly heavy nuclei rather than protons. The loss of accep-
tance for the highest-energy cosmic-ray flux hitting dense
stars, due to the intense surface magnetic fields, is also an
important element that we analyze. Finally, the slow-down

and stopping of relativistic black holes inside dense stars
requires a detailed study of energy loss in gravitational
scattering and absorption processes.
We note that our bounds are conservative. In particular,

at each point where we have encountered an uncertainty,
we have replaced it by a conservative or ‘‘worst case’’
assumption. For this reason, our bounds can likely be
improved through further work removing such uncertain-
ties. Furthermore, we do not exclude that there could be
other independent arguments, based, for example, on as-
trophysical or cosmological production of microscopic
black holes, leading to the exclusion of stable black holes,
or of their macroscopic effects.
In outline, the next section summarizes existing argu-

ments (and their extension) against risk from TeV-scale
black holes, namely, the robustness of quantum black hole
decay, and constraints from cosmic rays impinging on
objects in the solar system. Section III then summarizes
aspects of TeV-scale gravity scenarios and the correspond-
ing black holes. Section IV discusses black hole accretion
in Earth. Section V gives an in-depth analysis of the ques-
tion of stopping of neutral black holes, via gravitational
interactions. Section VI describes production of black
holes by cosmic rays impinging on white dwarfs. Sec-
tion VII describes the resulting accretion of a white dwarf,
and thus derives constraints on hypothetical TeV-scale
scenarios that otherwise might have been of concern. Sec-
tion VIII describes similar constraints arising from black
hole production on, and accretion of, neutron stars. A
summary and conclusions appear in Sec. IX.
Many of the technical details are treated in a series of

Appendices. Appendix A summarizes macroscopic Bondi
accretion, which is the canonical framework to deal with
the flow of matter into a black hole. For its use in our
context, Bondi accretion is generalized here to higher-
dimensional gravitational fields. Appendix B discusses
the effects of radiation emitted during accretion and exam-
ines the radiative transport conditions relevant to the ques-
tion of an Eddington limit for the growth of microscopic
black holes. In Appendix C we derive the main equations
governing the particle scattering and capture in the field of
a D-dimensional black hole, and Appendix D proves few
facts required by the study of stopping by white dwarfs.
Appendix E reviews the formalism for the calculation of
black hole production at the LHC and in the collisions of
cosmic rays, including the case of high-energy neutrinos.
Here we discuss the impact of different assumptions about
the composition of the high-energy cosmic rays, we evalu-
ate the production rates under the various assumptions, and
we establish the most conservative lower limits on such
rates. We also discuss the production properties of black
holes produced by cosmic rays, to serve as initial condi-
tions for their slow-down in dense stars. In Appendix F we
calculate the probability that black holes produced at the
LHC are trapped in the Earth’s gravitational field. We
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argue that, independently of our general conclusion that
trapped black holes would not accrete macroscopically, the
velocity spectrum of black holes produced during the LHC
lifetime in allowed extra-dimensional scenarios is such
that they would typically escape the Earth’s attraction.
Appendix G discusses the impact of magnetic fields on
the penetration of cosmic rays down to the surface of dense
stars. Appendix H addresses the production of black holes
by cosmic rays hitting ‘‘background’’ objects, such as
neutron-star companions, the interstellar medium, or even
dark matter. Here we discuss the conditions for the com-
panion of a neutron star in x-ray binary systems to effi-
ciently act as a beam-dump for cosmic rays, leading to the
production of black holes and their capture in the neutron
star, unimpeded by the presence of magnetic fields. A final
appendix contains useful conversion factors and physical
constants that are used throughout the paper.

II. ASSESSMENT OF PREEXISTING ARGUMENTS

We begin by assessing the strengths and weaknesses of
previously existing arguments regarding risk from black
hole production.

A. Instability of microscopic black holes

One of the most profound steps so far towards the yet-
incomplete unification of quantum-mechanical and gravi-
tational principles was Hawking’s discovery [9] that black
holes evaporate. This provided an important missing link in
the preexisting laws of black hole thermodynamics, by
explicitly calculating the temperature that characterizes a
radiating black hole.

While Hawking’s result has become nearly universally
accepted, it is certainly true that elements of the original
derivation of black hole radiance rely on assumptions that
are apparently not valid. Notable among these is the use of
modes of ultra-Planckian frequencies at intermediate steps
in the derivation. This naturally raises the question of the
robustness of the result.

Belief in the robustness of Hawking’s prediction of
nearly thermal evaporation has been boosted by arguments
for the result which have now been produced from several
different directions. These derivations have the virtue of
either facing head-on the issue of the trans-Planckian
modes, or being independent of them, and the basic effect
has survived a number of important consistency checks.

One early approach relying on the trace anomaly and
avoiding explicit reference to trans-Planckian modes was
pioneered by Christensen and Fulling [13]. In this ap-
proach, the stress tensor describing the Hawking radiation
is found by combining the known trace anomaly in two
dimensions, and the constraint that the stress tensor be
conserved. This approach has been used to give explicit
models of evaporating black holes [14] and has also re-
cently been generalized to higher dimensions in [15] and a
number of follow-up works.

Another approach is to modify the short-distance phys-
ics to remove the offending trans-Planckian modes. One
summary of such a prescription appears in [16], where it is
argued that despite a different origin for the modes, this
approach supports the statement that Hawking radiation
persists. This approach is also related to analog gravity
models.3 These are models based on condensed matter sys-
tems, where a horizon for sound waves occurs, and exhibits
a precise analog of the Hawking effect. For example, the
abstract of a recent overview talk [18] on the subject of
Hawking radiation states ‘‘analog models of gravity have
given us a clue that despite the shaky derivation, the effect
is almost certainly right.’’ These models illustrate various
detailed features of the corresponding radiation in the ana-
log systems.
One of the puzzles of Hawking radiation stems from the

fact that it appears to lead to loss of quantum coherence,
when followed to the end state of evaporation [19], and this
has led to the ‘‘black hole information paradox.’’4 Many
workers feel that the resolution will be that there are sub-
tle corrections to Hawking’s thermal spectrum that lead
to unitary evolution. Thus while very few question that
black holes Hawking evaporate, it is clear that there are
detailed aspects of the evaporation process that we do not
understand.
Indeed, the basic result, that black holes evaporate, ap-

pears quite robust from a very general perspective. Nature
is quantum mechanical, and basic quantum-mechanical
principles dictate that any allowed decay will occur. Thus,
stable (or nearly stable) objects must be ‘‘protected’’ by
conservation laws, examples being baryon number, lepton
number, etc. There is no such conserved charge carried by
a black hole that is not carried by ordinary matter, if a black
hole can be produced in collisions of partons at the LHC.
Thus by basic quantum principles such a heavy black hole
should decay into light, ordinary matter, and the only
question is the time scale. Since such a black hole can
have mass at most around 10 times the higher-dimensional
Planck mass,MD � 1 TeV, the only relevant dimensionful
parameter is the corresponding time scale, tD � 1=MD �
10�27s, and there are no other small dimensionless pa-
rameters to suppress decay. Thus, on very general grounds
such black holes are expected to be extremely short-lived,
as is indeed predicted by the more detailed calculations of
Hawking and successors.
Despite these very strong arguments for black hole

decay, the possibility of manufacturing microscopic black
holes on Earth suggests that one conduct an independent
check of their benign nature. For that reason, this paper
will test the hypothesis that the statements of this subsec-
tion are false by investigating possible consequences of

3For a review, see [17].
4For reviews, see [20–22].
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hypothetical black holes that do not undergo Hawking
decay.

B. Cosmic-ray collisions on Earth

Cosmic rays hit Earth with energies known to exceed
1020 eV, corresponding to center-of-mass (CM) energies
exceeding 100 TeV. Thus, anything that can be made with
Earth-based accelerators up to this energy is already being
made by nature. This argument can be used to effectively
rule out the existence of particles predicted by some specu-
lative scenarios or to exclude possible macroscopic con-
sequences of high-energy collisions, as discussed, for
example, in [23,24].

This argument requires, however, more attention if the
large momentum imparted to the produced particles by the
cosmic-ray kinematics has an impact on how they evolve
after production. Consider the cosmic-ray collision pro-
ducing the black hole (or any other particle), at the parton
level. E1 is the energy of the parton inside the cosmic-ray
nucleon and E2 <mp the energy of the parton inside the

atmospheric nucleon, where mp is the nucleon mass. To

produce a particle of massM, we need E1 � M2=2E2, and
therefore the minimum energy of the produced black hole
in the Earth rest frame is given by E1 >M2=2mp, or, for

the maximum value of M ¼ 14 TeV allowed at the LHC,

E1 � pBH > 108 GeV; (2.1)

where pBH is the momentum of the resulting black hole.
Any argument that such black holes, should they be stable,
would undergo macroscopic accretion, must be based on
the proof that, while traversing the Earth, they slow down
enough to get trapped by the Earth’s gravitational field.
Most such TeV-scale black holes should initially have color
or electric charge, since the incident partons (quarks, glu-
ons) are charged. In the usual picture, where Hawking
radiation is present, these rapidly discharge through the
Schwinger mechanism [25] of particle-antiparticle pair
creation in an intense (chromo-)electric field, or through
breaking/absorbing a QCD string. The time scale for the
neutralization is proportional to the black hole Schwarzs-
child radius R. While there is no known example of a
consistent microphysics such that Schwinger discharge oc-
curs and Hawking radiation does not, one can point out one
difference between them. Specifically, the Schwinger ef-
fect can be described in terms of pair production in the
gauge field outside the horizon, but Hawking radiation is a
trans-horizon effect. In the unlikely event that our under-
standing of the horizon misses some critical element for-
bidding black hole decay (an assumption that, in our view,
appears to contradict the basic quantum principles outlined
above), one might imagine that Schwinger discharge nev-
ertheless takes place. (One could parametrize such a sce-
nario by imposing rather artificial boundary conditions at
the horizon.)

Thus, we will consider collisions on Earth in two con-
texts—those which produce hypothetical stable charged
black holes, and those which produce hypothetical stable
black holes that rapidly neutralize.
Passage of a high-energy charged particle through mat-

ter leads to well-understood energy loss [26,27]. This is
due to long-range electromagnetic effects that have noth-
ing to do with the microphysics associated to the particle
itself. Therefore, a muon, or a black hole with the electric
charge and the mass of a muon, would be subject to the
same energy loss through radiative processes as they move
through matter. Since at high energy the radiative proper-
ties are mostly determined by the value of the Lorentz �
factor of the charged particle, we describe the energy-loss
properties of a singly charged black hole by rescaling the
energy loss of muons to the equivalent � value. For rela-
tivistic velocities, below the threshold for eþe� pair pro-
duction in the field of nuclei, the energy loss is described
by the Bethe-Bloch equation. The energy loss in this
regime depends on the velocity, with a slow growth pro-
portional to log�. The stopping power for black holes
is therefore similar to that of muons, of the order of
2 MeV cm2=g up to �� 103 [26,27]. For the average
composition of Earth, this means an energy loss of about
11 MeV/cm. Above �� 103 (which is the case at the time
of production for black holes of mass larger than 1 TeV)
pair production, bremstrahlung, and nuclear dissociation
appear. These grow approximately linearly with energy (or
�), with an energy loss of the order of 60 MeV/cm at ��
104, for the average Earth density. With Earth-like den-
sities, the distance scale necessary to slow down from the
production energy E�M2=mp to �� 103 is thus of order

M=ð6 keVÞ cm, or, for M� 14 TeV, more than 104 km,
larger than the radius of the Earth. The subsequent slow-
down below �� 103 takes place with the constant energy
loss of 1 GeV/m, corresponding to * 104 km. The stop-
ping distance grows with M, and a more careful estimate
shows the Earth provides enough stopping power for black
holes with unit electric charge up to a mass of the order
of 7 TeV. For larger masses, one can appeal to the stop-
ping power of the Sun. With a core density of about
150 gr=cm3, over a radius of the order of 0.2 solar radii,
namely 1:4� 105 km, the Sun column density can stop
black holes of mass well in excess of 100 TeV. Notice also
that our estimates are based on a black hole with unit
electric charge. Any minor addition to Q ¼ 1, due, for
example, to accretion of a net charge, would further in-
crease the stopping power. The continued health of the
Sun on multi-billion-year time scales—during which
many such black holes would have been produced and
stopped—thus apparently immediately rules out any risk
from charged TeV-scale black holes.
The above arguments apply to any elementary charged

particle. In particular, they apply to possible magnetic
monopoles. The stopping power for monopoles moving
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through matter is about 100 times larger than that of a
charged particle [28], since their magnetic charge is at least
1=� times greater than the electron electric charge. This
means that the Earth itself can stop magnetic monopoles
of masses much larger than those that can be produced at
the LHC.

Let us next turn to the hypothesis that such black holes
are stable but rapidly neutralize via Schwinger production
or another mechanism. In this case, the only interactions of
a black hole with matter are through its gravitational field.
We will give a more careful treatment of such interactions
below, but a rough cross section is the geometric size, ��
1=TeV2. Again using the average density of Earth, we find
of order 1 scattering event expected in its transit for this
cross section. The maximum momentum loss in a collision
with a parton of energy Ep is of size ��2Ep. This is

achieved when particles are scattered with significant mo-
mentum transfer in the black hole frame, for example, in a
head-on elastic collision, where the target particle is sig-
nificantly deflected. Since ��M=Ep, this would corre-

spond to a loss of a fraction of order 1 of the initial
momentum (2.1). However, this is clearly not neces-
sarily typical: due to the short-distance character of the
D-dimensional gravitational potential, the impact parame-
ter range for hard elastic scattering is restricted, and typi-
cally we shall either have a small-angle scattering, or the
target particle can be captured by the black hole, leading to
a large inelasticity and to a reduced velocity loss. We shall
discuss these issues in more detail in Sec. V. The more
careful analysis presented there also indicates that the
stopping power of the Sun is likewise insufficient.

To summarize, hypothetical stable charged black holes
should stop in the Earth for masses up to about 7 TeV, and
in the Sun if heavier. The multi-billion-year longevity of
Earth and Sun apparently provides a good safety guarantee.
We have no concrete example of a consistent microphysics
such that black holes neutralize via Schwinger discharge
but do not Hawking radiate, but our present state of knowl-
edge of quantum black hole processes does not strictly
rule out such a possibility. Thus, we will seek alternative
bounds on such a scenario, which will also serve the
purpose of improving the stringency of the bounds for
charged black holes.

III. ESSENTIALS OF
HIGHER-DIMENSIONAL GRAVITY

In this section we quickly review some features of
higher-dimensional scenarios realizing TeV-scale gravity
and of the black holes that exist in these scenarios. A brief
overview discussing more aspects of these scenarios and
black hole production in them is [7].

A. TeV-scale gravity scenarios

The basic idea of TeV-scale gravity is that either via
large extra dimensions [1,2] or large warping [3], the true

Planck scale is lowered to the vicinity of a TeV. To sum-
marize, let the D-dimensional action be

S ¼ 1

8�GD

Z
dDx

ffiffiffiffiffiffiffi�g
p 1

2
Rþ

Z
dDx

ffiffiffiffiffiffiffi�g
p

L; (3.1)

where GD is the D-dimensional gravitational constant, R
is the Ricci scalar, and L is the matter Lagrangian. We
consider a general compact metric gmnðyÞ, possibly to-
gether with warp factor AðyÞ,

ds2 ¼ e2AðyÞdx�dx� þ gmnðyÞdymdyn: (3.2)

Here the noncompact coordinates are x�, and the standard
model fields are typically taken to lie on a brane spanning
these dimensions. Then the relation between the higher-
dimensional Planck mass,5

MD�2
D ¼ ð2�ÞD�4

8�GD

(3.3)

and the four-dimensional Planck mass, defined via the
four-dimensional gravitational action

S4 ¼ M2
4

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g4ðxÞ

q
R4; (3.4)

is

M2
4

M2
D

¼ MD�4
D

Z dD�4y

ð2�ÞD�4

ffiffiffiffiffiffiffiffiffiffiffi
gD�4

p
e2A � MD�4

D

Vw

ð2�ÞD�4
:

(3.5)

This equation defines the ‘‘warped volume’’ Vw.
Current lower bounds [26] on MD are around 1 TeV. In

order for MD to be in the TeV vicinity, one must have a
large warped volume. This can be achieved by large vol-
ume and moderate warping, by large warping, or by some
combination of the two. A simplified version of the rela-
tionship (3.5), assuming the scale of all extra dimensions is
set by a radius RD, is

M2
4

M2
D

� ðMDRDÞD�4e2�A; (3.6)

where�A is a measure of the relative difference in warping
between the region of maximal warp factor and the region
in which standard model physics resides.
One can solve for the characteristic D-dependent size of

the extra dimensions,

RD � M�1
D

�
e�2�AM2

4

M2
D

�
1=ðD�4Þ

: (3.7)

Of course, larger warping and fixed MD means that RD is
smaller for a givenD. In particular, for unwarped scenarios

5In this paper, we use the conventions of the ‘‘Extra dimen-
sions’’ minireview by Giudice and Wells, in the Particle Data
Book [26].
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R5 is macroscopic and thus ruled out, but with sufficient
warping one finds viable scenarios, such as that of [3].

For MD ¼ 1TeV and with no warping, we find the
following radii:

RD ¼ 4:8� 10�2cm; for D ¼ 6; (3.8)

RD ¼ 3:6� 10�7cm; for D ¼ 7; (3.9)

RD ¼ 9:7� 10�10cm; for D ¼ 8; (3.10)

RD ¼ 2:8� 10�11cm; for D ¼ 9; (3.11)

RD ¼ 2:7� 10�12cm; for D ¼ 10; (3.12)

RD ¼ 4:9� 10�13cm; for D ¼ 11: (3.13)

For higher MD and/or in the presence of warping, these
numbers should be multiplied by a factor�

MD

TeV

�ð2�DÞ=ðD�4Þ
e�2�A=ðD�4Þ: (3.14)

B. Higher-dimensional black holes

1. Schwarzschild solution

We next turn to properties of black holes in these sce-
narios. We begin with the D-dimensional Schwarzschild
solution with mass M, which takes the form

ds2 ¼ �
�
1�

�
RðMÞ
r

�
D�3

�
dt2 þ 1

1� ðRðMÞ
r ÞD�3

dr2

þ r2d�2: (3.15)

Here the Schwarzschild radius RðMÞ is

RðMÞ ¼ 1

MD

�
kDM

MD

�
1=ðD�3Þ

; (3.16)

where the constant kD is defined as

kD ¼ 2ð2�ÞD�4

ðD� 2Þ�D�2

; (3.17)

and where �D�2 is the volume of the unit D� 2 sphere,

�D�2 ¼ 2�ðD�1Þ=2

�½ðD� 1Þ=2� : (3.18)

One can likewise write down the higher-dimensional ver-
sion of the Kerr solution [29].

2. Black holes in standard compactifications

Nonrotating black holes with radius much less than the
curvature scales and the sizes of the extra dimensions are
well approximated by the Schwarzschild solution (3.15).
When the Schwarzschild radius reaches a size compara-
ble to that of an extra dimension, one expects an in-

verse Gregory-Laflamme[30] transition to the lower-
dimensional black hole, extended over the extra di-
mension. In this case the solution will be given by the
lower-dimensional version of the solution (3.15), with
trivial dependence on the compact coordinates.
For the purposes of computing forces due to a black

hole, we will need its gravitational potential. In the weak-
field regime this is given by

� ¼ �ðg00 þ 1Þ=2; (3.19)

leading to the force on a mass m:

FGðrÞ ¼ �
~kD

MD�2
D

Mm

rD�2
; (3.20)

where

~k D ¼ ðD� 3ÞkD=2 ¼ D� 3

D� 2

ð2�ÞD�4

�D�2

: (3.21)

The attractive gravitational force matches between the
lower and higher-dimensional expressions in the region
r� RD. Specifically, by equating the D-dimensional force
law to that of 4D, we find that the forces match at a
crossover radius

RC ¼ ð8�~kDÞ1=ðD�4ÞRD; (3.22)

whose values are of size 5� 6RD in cases of interest.

3. Black holes in warped compactifications

As an example of a broad class of warped compactifi-
cation scenarios, consider a metric of the form

ds2 ¼ dy2 þ e2y=RDdx24 þ R2
Dds

2
X; (3.23)

where e2y=RDdx24 describes the D ¼ 4 part of the metric.
Here RD is both the characteristic curvature radius associ-
ated with the warping and the radius of the remaining extra
dimensions, compactified on some compact manifold X,
whose metric ds2X we have taken to have radius Oð1Þ. The
coordinate y is taken to have range ð0; LÞ. The form (3.23)
is representative of many known examples of warped
compactifications, such as the truncated AdS5 solutions
of [3] and the warped flux compactifications of [4,31],
although more generally one expects, for example, the
metric of X to vary with y.
For these compactifications, a black hole whose radius

satisfies R � RD is well described as the D-dimensional
Schwarzschild solution (3.15). On the other hand, a suffi-
ciently large black hole is expected to be described by
a four-dimensional Schwarzschild solution, represented
by (3.23) with dx24 replaced by the four-dimensional
Schwarzschild metric. Between these extremes the solu-
tions are not known.
However, approximate forms for the linearized gravita-

tional potential, appropriate to describing the weak-field
regime of a concentrated mass such as a black hole, have
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been derived in [32]. In the region RD & r & L, one finds
the linearized perturbation of dx24 given by

� ¼ k̂DM

MD�2
D

e�jDr=RD�ðD�1Þy=RD

RDr
D�4

: (3.24)

Here jD ¼ jðD�3Þ=2;1 is the first zero of the relevant Bessel

function and k̂D is a constant. Thus, the radial gravitational
force at y ¼ 0 is

FD;w ¼ � k̂DM

MD�2
D

e�jDr=RD

RDr
D�4

�
jD
RD

þD� 4

r

�
: (3.25)

An important question is at what specific radius RC does
the gravitational force from (3.24) match onto that for four
dimensions. This can be found by equating FD;w to

�G4M=r2. This yields the relation

RC

RD

¼ 1

jD

�
ln

�
M2

4

M2
DðRCMDÞD�4

�
þ 2 ln

�
RC

RD

�

þ ln

�
8�k̂D

�
jD þ ðD� 4ÞRD

RC

���
: (3.26)

From this, we see that if RC is significantly smaller than the
radius given by the unwarped version of (3.6), this corre-
spondingly increases the size of the region between RD and
RC where warping is significant.

4. A general perspective

We close this section by outlining a broader perspective
on TeV-scale gravity and black holes. Note that a general
feature of the above discussion is that below the value RC

the potential (3.19) crosses over from the four-dimensional
form to one that grows more rapidly as r decreases. The flat
and warped cases give both power law and exponential
growth laws. Moreover, the gravitational potential is pro-
portional to the mass. In order to have a TeV-scale model,
note that the potential corresponding to a TeV-scale mass
should reach the value �� 1 by the time r reaches the
value r� 1=TeV. We assume that while the gravitational
potential is modified at short distances, the dynamics of
other forces is four-dimensional, as in brane-world models,
in order to agree with experiment.

Moreover, as we will see, many features of the accretion
process only depend on the long-range potential, since it is
at such long scales that gravity begins to compete with
other effects. From this general perspective, a very general
definition of a black hole is as an object with such a long-
range gravitational potential, and which is allowed to
accumulate mass at �� 1.

One could postulate more general forms for the poten-
tial, but clearly the cases we have described are represen-
tative of a very wide class of potentials that become strong
at the TeV scale.

IV. BLACK HOLE ACCRETION IN EARTH

A. Accretion basics

Our interest is in accretion of black holes trapped inside
astronomical bodies such as planets, stars, neutron stars,
etc. One parameter governing this accretion is the effective
capture radius rcðMÞ of the black hole, for a given mass.
This is the radius out to which the gravitational field of the
black hole succeeds in attracting matter that will eventually
be absorbed. The other parameter is the flux of mass
towards the black hole, F. Specifically, the black hole
mass grows as

dM

dt
¼ �r2cF: (4.1)

This formula neglects reradiation of incident energy, which
is discussed in Appendix B, and, if present, can lower the
growth rate. The flux can arise either from the motion of
the black hole relative to the body, or from the motion of
the constituents of the body relative to the black hole. In the
case where the dominant effect is the velocity v of the
black hole, we have

F ¼ �v; (4.2)

where � is the mass density near the capture radius. This
produces an evolution equation

dM

dt
¼ ��vr2cðMÞ: (4.3)

The capture radius rc is frequently different from the
Schwarzschild radius R and depends on the size and state
of motion of the black hole, as well as on properties of the
surrounding medium. For example, free particles with
velocity v with respect to a black hole have capture radii

rc � R=v: (4.4)

Black holes whose production is accessible at the LHC
have an initial radius of the order TeV�1. As they absorb
matter, their physical and capture radii grow.6 In atomic
matter, there are three possible domains where the proper-
ties of black hole interactions with matter vary. The first
phase is that where rc is smaller than the nucleon size,
rN � 1 fm. A second phase is that where rN & rc & a

(where a� 1 �A is the atomic radius). The third phase is
rc > a. Similar phases are present for growth inside a white
dwarf, but in the case of growth inside nuclear matter of a
neutron star, the two latter phases are replaced by a single
phase with rc * rN . The details of the evolution during
these phases will vary, depending on where rc is relative to
RD and RC, the distances characterizing crossover from the
D-dimensional force law to that of four dimensions.

6They also may have significant initial angular momentum.
However, as they absorb matter, with negligible average angular
momentum, they become increasingly well approximated as
nonspinning black holes.
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This section will discuss evolution, first at the atomic
level, and then, for larger-scale black holes, from macro-
scopic matter. The latter is described by Bondi evolution;
we also briefly discuss, and argue against, the presence of
an Eddington limit, which would be relevant if emitted
radiation were sufficient to slow accretion. Our goal will be
to estimate, under the most pessimistic assumptions,
namely, of fastest possible growth, the time scale required
for accretion of black holes to macroscopic size. In sub-
sequent sections, we will also perform similar calculations
for accretion of white dwarfs and of neutron stars.

B. Subatomic accretion in Earth

1. Competition with electromagnetic binding

As is described in Appendix F, most LHC-produced
black holes would be produced with large velocity as
compared to the Earth’s escape velocity, vE ¼ 11 km=s,
due to imbalanced kinematics of the initial-state partons,
initial and final state radiation, etc. However, those that
are downward directed will accrete matter and slow down
while passing through the Earth. Appendix F estimates this
effect based on closely related calculations for black holes
created by cosmic rays in Sec. V. For present purposes, we
will simply make the most conservative assumption that
some of these black holes do become gravitationally bound
to Earth. Given the escape velocity and that the minimum
mass of such a black hole would be OðTeVÞ, typical ki-
netic and gravitational potential energies would thus be *
OðkeVÞ. This means that on the occasions where a black
hole and nucleus bind, the black hole’s energy overcomes
the (atomic) binding energy of the nucleus to the surround-
ing material, and the combined system continues to fall.
Thus the black hole’s motion should initially be dictated by
the net gravitational field of the Earth.

In a collision of the black hole with a nucleus, binding
depends on the size of the impact parameter b; we will
largely neglect separate capture of electrons since their
capture rates are much smaller due to their smaller masses
and higher velocities. The black hole’s effects are signifi-
cant at impact parameters where its gravity competes with
the electromagnetic binding forces of the surrounding
medium. The latter are estimated by noting that if a nucleus
is displaced from its equilibrium position by a small dis-
placement d, one will find a restoring force of the form

FEðdÞ ¼ �Kd (4.5)

for some constant K. This is justified, for example, by
considering the force acting on an ion7 of charge Z0 as it
is displaced by a distance d from the center of charge of its
electron cloud:

FEðdÞ ’ ��
Z0

d2
Z0 d

3

a3
¼ ��

Z02

a3
d; (4.6)

where we assumed the electron charge to be uniformly
distributed in the atomic volume. The black hole will exert
a competing gravitational force which is maximum at the
point of closest approach. For a D-dimensional force law
(3.20), and with the nucleus displaced by d towards the
black hole, it is

FGðdÞ ¼ �
~kDMm

MD�2
D ðb� dÞD�2

; (4.7)

where the nuclear mass is given in terms of the mass
number and proton mass as m ’ Amp. The nucleus can

become bound to the black hole if this force dominates FE

for all d over the range ð0; bÞ. This amounts to the condi-
tion that, for all d,

~kDMm

KMD�2
D

> dðb� dÞD�2: (4.8)

Maximizing the right-hand side (RHS) with respect to d,
we find the binding condition:

b < ðD� 1Þ
� ~kDMm

ðD� 2ÞðD�2ÞKMD�2
D

�
1=ðD�1Þ ¼ REM;

(4.9)

which defines the electromagnetic capture radius REM. To
simplify subsequent expressions, we rewrite this as

REM ¼ 1

MD

�
�DM

MD

�
1=ðD�1Þ

; (4.10)

where we define

�D ¼ ðD� 1ÞD�1

ðD� 2ÞD�2

~kDM
2
Dm

K
: (4.11)

The ratio of electromagnetic to Schwarzschild radii is
given by

REM

R
¼ �1=ðD�1Þ

D

k1=ðD�3Þ
D

�
MD

M

�
2=ðD�3ÞðD�1Þ

: (4.12)

Since K is governed by atomic scales, �D 	 1, and REM

exceeds R for subatomic R.
For low relative velocities, nuclei entering this radius

can become bound to the black hole. Note that this will not
be the case for sufficiently high relative velocity v, as the
free-particle capture radius R=v is smaller than REM for
large v. However, we will consider sufficiently small ve-

7Here we account for the fact that the inner electrons are
typically strongly bound to the nucleus, and so move with it.
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locities that REM <R=v, where competition with electro-
magnetic binding described by FE dominates.

While subsequent total absorption of a captured nucleus
is not guaranteed,8 the most conservative assumptions for
the purposes of discussing accretion on Earth are those that
lead to the fastest accretion. We will thus assume that all of
the mass of the nucleus is absorbed. In the absence of other
effects, this black hole would also have the charge of the
nucleus. This charge may discharge through the Schwinger
mechanism, or be retained, depending on assumptions. If it
is retained, the next time that the black hole encounters a
nucleus within REM, this charge is insufficient to prevent
absorption, but with sufficient charge build-up repulsion
could become an important effect. A positively charged
black hole will also have an enhanced absorption rate for
electrons, which works toward neutralization. So, while
charge effects could possibly somewhat slow the absorp-
tion rate, we will make the conservative assumption that
they do not and that sufficient neutralization is automatic.

To determine actual capture sizes, one needs the parame-
ter K. There are different ways of estimating a typical K.
One approach is to estimate the dipole force when one
separates an ion in a crystal from the electron cloud of the
bonding orbitals, as suggested earlier by Eq. (4.6). Assum-
ing there that all but the outermost electrons move coher-
ently with the nucleus yields the value

K � �

a3
� 14 eV

�A2
; (4.13)

where a is the atomic radius, �1 �A. Another method is to
use the relation to the Debye frequency !D,

K

m
¼ !2

D

	
; (4.14)

where 	 is an Oð1Þ constant that depends on the material.
Corresponding Debye temperatures, TD ¼ !D, fall in the
range 300–600 K for typical materials forming the Earth’s

interior (TFe
D ¼ 460 K, TSi

D ¼ 625 K, T
Mg
D ¼ 320 K). In

this case, one finds a typical K of size:

K ¼ 12 eV

	 �A2

�
m

40 GeV

��
TD

400 K

�
2

¼ 1:20� 10�27 m

	

�
TD

400 K

�
2
M2

0; (4.15)

consistent with (4.13). Here we have introduced the TeV
mass scale,

M0 ¼ 1 TeV; (4.16)

which frequently provides a useful normalization scale. In
Earth one also has semisolid or semifluid layers, but these

have characteristic values of K=m, given by pairing poten-
tials of similar size to those of solids.
Since K=m is directly related to TD, we will in fact

parametrize results in terms of this temperature. For
example,

�4 ¼ 	
27M2

4

32�T2
D

¼ 1:30	� 1057
�
400 K

TD

�
2
: (4.17)

With this prelude, we are now prepared to discuss the
subatomic phase of accretion.

2. Subatomic growth laws

As we have described, in principle there can be three
regimes depending on the size of the capture radius relative
to nuclear and atomic scales. The capture radius in atomic
matter is given by REM; let us estimate this for the mini-
mum size black hole, with M�MD. For D ¼ 11, we find
from (4.10), (4.11), and (4.14) that

REMðM ¼ MD;D ¼ 11Þ � 3	1=10 � 10�14 cm; (4.18)

with larger values for smaller D. Thus the subnuclear
growth phase is nearly negligible, and we will (conserva-
tively) set the corresponding time to zero.
We therefore turn directly to evolution from REM � rN

up to the atomic radius, a� 1 �A. Combining the general
evolution equation (4.3) with the expression (4.10) for the
electromagnetic radius, the growth law for a black hole
moving with velocity v takes the form

dM

dt
¼ ��vR2

EM: (4.19)

This expression integrates to give a distance

d ¼ d0

�
MD

M0

�
3 D� 1

ðD� 3Þ�D

�
�DM

MD

�ðD�3Þ=ðD�1Þ
(4.20)

for growth to a massM, where we introduce the character-
istic distance, given via TeV units (4.16)

d0 ¼ M3
0

��
: (4.21)

Using the average density for Earth, �E ¼ 5:5 gr=cm3, one
finds d0 ¼ 3� 1011 cm ¼ 9s, which is much bigger than
the Earth’s radius. The distance (4.20) is governed by the
upper limit of the mass, and the lower limit has thus been
dropped. The expression (4.20) can also be written in terms
of the final REM, using (4.10), as

d ¼ d0

�
MD

M0

�
D�2

�
D� 2

D� 1

�
D�2 1

ðD� 3Þ~kD
K

mM2
0

�ðREMM0ÞD�3: (4.22)

From Eqs. (3.8)–(3.13) we see that this evolution applies
to all values of REM < a if D 
 7. For D � 8, instead, the
radius RD of the extra dimensions is smaller than a, and

8In particular, (chromo-)electrostatic effects apparently slow
accretion early in this phase.
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therefore as REM grows larger than RD the dimension
governing the force law changes, and one should then set
D ¼ 4 in Eq. (4.22). We therefore must treat these cases
separately.

In performing the following estimates, using the formula
(4.22), we will assume that the black hole uniformly travels
at the escape velocity vE. Were its velocity higher, it would
not be gravitationally bound to Earth. This is clearly a con-
servative assumption, as the black hole will slow down as it
accretes; if needed one could model this slow-down by
integrating the evolution of the mass and potential energy
over the lifetime of the black hole. (We expect that the
bounds of this paper might be tightened by a more com-
plete treatment of this slow-down.) We will also assume a
uniform density �E for Earth. Of course, if the black hole
spent most of its time near the center of the Earth, one
should use a higher central density. But, correspondingly,
the black hole velocity would be lower, scaling linearly
with the distance from the Earth’s center. Since the Earth’s
density in the deep core is at most a factor of 2–3 higher
than its average value, the estimates using the average
density and the escape velocity should tend to (conserva-
tively) overestimate the accretion rate.

3. Time scales for rN & REM & a in D ¼ 6; 7

The relevant time scales for growth to atomic sizes for

D ¼ 6, 7 can be found by setting REM � 1 �A in in
Eq. (4.22), assuming constant velocity vE, and substituting
the values of the other parameters. This results in the
following time scales:

t� 4:5� 103
1

	

�
TD

400 K

�
2
�
MD

M0

�
4
s; D ¼ 6; (4.23)

t� 3:0� 1011
1

	

�
TD

400 K

�
2
�
MD

M0

�
5
s; D ¼ 7: (4.24)

These times are quite short, compared to geologic time
scales, and this phase for D ¼ 6, 7 will therefore be
regarded as negligible.

4. Time scales for rN & REM & RD in D � 8

For D � 8, the black hole would first evolve from
REM � rN up to REM � RD via the evolution law (4.19).
The relative time scales can be obtained by equating REM

in Eq. (4.22) with the expression of RD given by Eq. (3.7),
and assuming the uniform velocity vE, resulting in:

t� 5:4� 106
1

	

�
TD

400 K

�
2
�
M0

MD

�
3=2

yr; D ¼ 8; (4.25)

t� 2:0� 104
1

	

�
TD

400 K

�
2
�
M0

MD

�
7=5

yr; D ¼ 9; (4.26)

t� 2:2� 102
1

	

�
TD

400 K

�
2
�
M0

MD

�
4=3

yr; D ¼ 10;

(4.27)

t� 4:8
1

	

�
TD

400 K

�
2
�
M0

MD

�
9=7

yr; D ¼ 11: (4.28)

The corresponding times are short compared to e.g. the
solar lifetime and become shorter in higher dimensions,
since the values of RD in these cases become smaller and
smaller, approaching rN and reducing the available evolu-
tion range. As we show next, this, however, means that
there will be more range for the 4-dimensional evolution,
which is typically slower because of the weaker gravita-
tional coupling in 4 dimensions.

5. Time scales for RD & REM & a in D � 8

Once REM reaches OðRDÞ, the distance at which the
black hole’s gravity competes with electromagnetic bind-
ing forces is in the region where the black hole’s field
transitions to the lower-dimensional form. For concrete-
ness, let us first neglect warping and assume that all radii
are the same so that this is a transition to the four-
dimensional regime. One reaches this regime at the cross-
over radius given by (3.22).
The distance required to reach a given REM >RC is

then, from the distance (4.22) and using the formula
(4.17) for �4,

d ¼ 32�d0
9	

�
M4

M0

�
2
�
TD

M0

�
2ðREMM0Þ: (4.29)

We are interested in the corresponding time scale to
reach REM ¼ 1 �A, where evolution begins to cross over
to ‘‘macroscopic.’’ Introducing the numerical values for
our parameters, along with the escape velocity vE and

taking REM ¼ 1 �A, we then find a time of the order of
1011 yr

t ¼ 9:9� 1018s
1

	

�
TD

400 K

�
2 ¼ 3:1� 1011

1

	

�
TD

400 K

�
2
yr;

(4.30)

for evolution to the ‘‘macroscopic’’ crossover.
In the case of D ¼ 8, RC is close to 1 �A. One may

therefore fear that, should the effective RC be an under-
estimate by a factor of 2–3, there will be no room for this
phase of evolution. However, notice that, aside from the
factor ðD� 1Þ=ðD� 3Þ, the distance (4.20) is the charac-
teristic distance for one e-fold growth of the mass. Since
the higher-dimensional evolution law must match onto the
four-dimensional one in this region (as can be seen explic-
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itly), and since the growth of the radius over a single e-fold

in the mass is small (e1=ðD�1Þ, or e1=3 in four dimensions),
the e-fold time for REM � 1 �A sets a lower bound on the
evolution time.

C. Macroscopic accretion, REM * a

1. Bondi accretion basics

Once the electromagnetic capture radius of the black
hole, REM, grows beyond the atomic radius a , accretion
becomes a macroscopic process, with multiple atoms fall-
ing in, and with the gravitational range of the black hole
exceeding the mean free path. In this regime, two effects
counter the free fall of matter: the cohesion forces that keep
atoms together and matter’s finite compressibility. We shall
not attempt to provide a simple model to describe the effect
of cohesion forces on a macroscopic scale, due to the
varied composition of matter inside the Earth, with crys-
talline, semisolid, and liquid phases at various depths.
Moreover, it is possible that once the accretion rate reaches
a certain threshold, radiation emitted from the accreting
matter can melt the surrounding material. (This reradiation
effect is discussed in Appendix B, where it is found not to
be important until REM 	 1 �A.) Since our aim is to be
conservative and consider the fastest conceivable evolu-
tion, we shall neglect the slow-down due to cohesion
forces, and treat the inside of the Earth as a nonviscous
fluid, free to fall into the black hole, subject only to the
general laws of hydrodynamics, such as the continuity
equation and energy conservation. The compressibility of
the medium, which limits the amount of matter that can be
funneled towards the black hole, is accounted for by mac-
roscopic hydrodynamic properties of the medium, such as
its sound speed.

The description of accretion under these conditions was
developed by Bondi, Hoyle, and Lyttleton [33]. We review
the derivation of the resulting evolution equation and ex-
tend it to incorporate the D-dimensional force law in
Appendix A; it is

dM

dt
¼ �
DcsR

2
B�; (4.31)

where we define the Bondi radius in terms of the black hole
radius R,

RB ¼
�ðD� 3Þ

4c2s

�
1=ðD�3Þ

R; (4.32)


D is a numerical constant depending on D and on the
polytropic index �, given in (A.20), which can range
between 3< 
D < 18, and � and cs are the density and
sound speed within the matter asymptotically far from the
black hole.

2. Matching microscopic and macroscopic regimes

Before estimating corresponding time scales, let us first
compare the sub- and superatomic regimes of growth at the
transition point, REM � a.
Using Eq. (4.14) and the relation between Debye fre-

quency and sound velocity cs ’ !Da ¼ TDa,
9 we can

rewrite the expression for REM given in Eq. (4.10) as

REM ’ a�

�
M

Ma;D

�
1=ðD�1Þ

; (4.33)

where

� ¼ D� 1

D� 2

�
ðD� 2ÞðD� 3Þ	

2

�
1=ðD�1Þ

; (4.34)

Ma;D ¼ c2sðaMDÞD�3

kD
MD: (4.35)

From Eqs. (4.32) and (3.16), we also find:

RB ¼ a

�
D� 3

4

�
1=ðD�3Þ� M

Ma;D

�
1=ðD�3Þ

: (4.36)

The evolution equations for the two regimes can therefore
be equivalently rewritten as�

dM

dt

�
EM

¼ �2��vEMa
2

�
M

Ma;D

�
2=ðD�1Þ

; (4.37)

�
dM

dt

�
B
¼ 
D

�
D� 3

4

�
2=ðD�3Þ

��csa
2

�
M

Ma;D

�
2=ðD�3Þ

:

(4.38)

As before, we use vEM � vE; notice that cs inside the Earth
has a comparable value. So, up to an overall factor of order
1, Ma;D turns out to be the mass value at which the two

evolution rates are the same, and the capture radii for
the subatomic and the Bondi accretion regimes coincide.
The subatomic growth is faster when M<Ma;D, while

Bondi’s growth is faster when M>Ma;D. This means

that for the purpose of being conservative, it is justified
to use the former accretion model below Ma;D, and the

latter above Ma;D.

3. Time evolution with Bondi accretion

We can split the numerical analysis for the Bondi accre-
tion into the case of RD < a (D � 8), where all the evolu-
tion for REM > a is four dimensional, and the case with
RD > a (D 
 7), where we need to consider both phases.
The D-dimensional Bondi evolution equation (4.31) is

straightforward to integrate. Since we are interested in

9Using TD ¼ 400 K and a ¼ 1 �A, we obtain cs ’ TDa�
5:2 km s�1, which is consistent with the sound velocities of
typical Earth materials, e.g. cFes � 5 km s�1 at atmospheric
pressure; sound velocities in the liquid forms of a metal are
just 20%–30% smaller.
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times for evolution to given radii, it is most useful to
convert it to an equation for the Bondi radius RB, using
(4.32). This gives the following times, for evolution from
an initial Bondi radius RB;i to a final Bondi radius RB:

t ¼ d0
4cs

ðD� 5Þ
DkD

�
MD

M0

�
D�2ðM0RBÞD�5; D > 5;

(4.39)

t ¼ d0
4cs

5k5

�
M5

M0

�
3
lnðRB=RB;iÞ; D ¼ 5; (4.40)

t ¼ d0
4cs

4k4

�
M4

M0

�
2
�

1

M0RB;i

� 1

M0RB

�
; D ¼ 4: (4.41)

Recall that d0 was defined in (4.21). A transition from
the D- to 4-dimensional Bondi behavior will occur when
RB is in the range of RD;C. It is easy to check that this

transition is continuous, namely, the values of the D- and
4-dimensional Bondi radii coincide, when RB ¼ RC. At
this radius, the mass is given by

MB ¼ 16�c2s½4�kDðD� 3Þ�1=ðD�4Þ
�
M2

4

M2
D

�ðD�3Þ=ðD�4Þ
MD:

(4.42)

The evolution time to the slightly smaller radius RB ¼ RD

is found from (4.39),

t ¼ d0cs
4

ðD� 5Þ
DkD

�
MD

M0

�ðD�2Þ=ðD�4Þ�M4

M0

�
2ðD�5Þ=ðD�4Þ

:

(4.43)

4. Macroscopic time scales: D � 8

We start with the case RD < a, so that evolution for
RB > a is purely four-dimensional Bondi accretion.
When the black hole enters the macroscopic regime, RB �
a, Eq. (4.32) implies that its mass is of order 1011 gr,
therefore it is still small in geologic terms. Thus by this
time it should have settled deep within the Earth. The
quantity csd0, relevant to the Bondi evolution formulae,
can be estimated from the approximately linear relation,
known as Birch’s law [34], between sound speed and
density. This has been tested experimentally for Fe
[35,36] up to the densities of 12gr=cm3 found in the
Earth’s core, giving

d0cs � 1:33� 10�4s; (4.44)

which is then density independent. (One also finds values
comparable to this using, e.g., sound speeds and densities
for materials such as iron at low pressure.) Equation (4.41)
then gives the following time to double the radius from
RB � a to RB � 2a (and the mass from M � 1011 gr to
M � 2� 1011 gr):

t ¼ 8�


4

d0cs
1

aM0

M2
4

M2
0

� 1:2� 1012
1


4

yr: (4.45)

As shown in Appendix A, the value of 
4 is in the range 4–
18; for � ¼ 5=3 (namely the adiabatic index of a non-
relativistic electron gas), 
4 ¼ 4. Notice that the parameter
dependence of (4.45) is identical to that of Eq. (4.29), once
we use cs ’ TDa. This is also reflected in the similarity of
the time scales, Eqs. (4.30) and (4.45).
As a side note, we remind the reader of discussions of

the possibility that primordial black holes remain from the
early universe; in the standard quantum scenario only those
with masses * 1015 gr would have not yet evaporated.
With the present formalism, we can provide a bound on
the lifetime of Earth, should a minimum-mass primordial
black hole be captured within its gravitational field. Using
the parameters in this section, and the evolution law (4.41),
we find a bound on the accretion time t * 47 Myr, with
shorter times for higher-mass black holes. These, and
corresponding accretion times we will find for white
dwarfs and neutron stars, may allow one to set limits on
galactic densities of primordial black holes.

5. Macroscopic time scales, D ¼ 6; 7

In the cases D ¼ 6, 7, RD > a and so we have
D-dimensional Bondi evolution up to RB � RD, and then
four-dimensional Bondi evolution from RB ¼ RC up to
infinity. To be conservative, we model the phase with RD <
RB < RC by assuming D-dimensional evolution with a
constant Bondi radius, with RB ¼ RC, until the black
hole mass grows to the point that the respective RB exceeds
RC. For D ¼ 7 the mass at RB � a is of order 104 gr; for
D ¼ 6 it is much smaller. For our approximate estimates,
we again use the value of csd0 given in (4.44).
The times for the evolution up to RD are thus given by

(4.43), leading to

t ¼ 5:5� 104
1


6

�
MD

M0

�
2
yr; D ¼ 6; (4.46)

t ¼ 8:6� 108
1


7

�
MD

M0

�
5=3

yr; D ¼ 7: (4.47)

The following phase, between RD and RC, then has a
time scale given by

t ¼ d0cs
16�

½4�ðD� 3ÞkD�1=ðD�4Þ
D

�
�
MD

M0

�ðD�2Þ=ðD�4Þ�M4

M0

�
2ðD�5Þ=ðD�4Þ

: (4.48)

The subsequent evolution to large sizes has a time scale
determined by the initial radius, RB ¼ RC in (4.41), and
results in an expression identical to (4.48), with 
D re-
placed by 
4. The time scales for these two phases are
given by
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t ¼ 9:7� 104
1


6;4

�
MD

M0

�
2
yr; D ¼ 6; (4.49)

t ¼ 1:28� 1010
1


7;4

�
MD

M0

�
5=3

yr; D ¼ 7: (4.50)

The D ¼ 6 time is short as compared to geologic time
scales. Using 
7 ¼ 4 (independent of �) and 
4 ¼ 4 (for
� ¼ 5=3) we obtain in D ¼ 7 a combined time scale of
approximately (6.4, 20, 40, 65, 94) billion years for MD ¼
1; . . . ; 5 TeV. Since, as we discuss in Appendix E, a con-
servative threshold for black hole formation is Mmin ¼
3MD, these values correspond to minimum black hole
masses Mmin ¼ ð3; 6; 9; 12; 15Þ TeV.

D. Warped evolution

In order to parametrize more general evolutions, we
consider the case of a warped scenario, as described in
Sec. III B 3. In this case, we have D-dimensional evolution
up to capture radius RD, then a warped evolution up to
RC, then four-dimensional evolution from then on. These
scales are related by an expression of the form (3.26).
Combining this with the maximum value of the warping,
found from (3.6) by taking RD to be the minimum possible
value, M�1

D , we find that

RC=RD & 102; (4.51)

so there is still not wide disparity between these scales.
As the preceding discussion has illustrated, a key ques-

tion is the location of RC with respect to the atomic scale a.
Macroscopic evolution in the four-dimensional regime is
dominated by the time scale from the lower end point at

RB ¼ RC, and if RC & 200 �A, this, via (4.41), yields a safe
time scale in excess of 3� 109 yr. The warped growth
below RC should also yield a similar time scale, as in the
preceding discussion.

On the other hand, accelerated growth is possible for RC

significantly larger than 200 �A. We particularly saw this in
the case D ¼ 6. Warped evolution presents another ex-
treme (but finely tuned) scenario. Specifically, consider
the case D ¼ 5 with radius just below the experimen-
tal bound, say RC � 0:2 mm. In this case, one finds five-
dimensional evolution through subnuclear, subatomic, and
Bondi phases. If, in line with our discussion of scales, we
take RD � 0:02 mm, the evolution time up to this ra-
dius follows from (4.40). This yields an estimate tB;5 �
5� 10�3s. At this point, the black hole has a mass MB;5

around 0.1 gr. Next, one evolves through the warped re-
gime. The precise form of the evolution in this regime is
not completely understood. The form of the linearized
potential [32] suggests that the radius grows as the loga-
rithm of the energy, but Ref. [32] also points out that the
corresponding solutions are possibly unstable and instead
spread out more widely on the visible brane. Refer-
ence [37] worked out details of a possible picture of the

resulting solution, which would be the gravitational dual of
a plasma ball of QCD. Whatever the precise evolution law
is, it is quite slow, since at the end of this phase the mass
is of size MB;4 � 2� 1017 gr while the radius has only

changed from RD to RC. Conservatively, one can take the
fastest time scale for evolution, namely, that with a con-
stant capture radius RB � RC. Finally, the time for the
four-dimensional evolution from RB ¼ RC to the mass of
the Earth has a time scale given by (4.41). Both of these
phases yield time scales

t� 3� 105 yr: (4.52)

While this time scale as well as that of theD ¼ 6 case only
represent lower bounds on the accretion time, since we
have made various conservative assumptions such as that
of accretion from a fluid, these times are too short to
provide comfortable constraints.

E. An Eddington limit?

If evolution is sufficiently rapid, as is particularly ex-
hibited by the D ¼ 6 case and the extreme D ¼ 5 warped
case, and in four dimensions, one is naturally led to ques-
tion whether there is an Eddington limit. This would occur
if radiation from the rapidly accreting matter produced
sufficient pressure to inhibit accretion.
In particular, one can parametrize the total luminosity of

the outgoing radiation in terms of the rate of mass accretion
by an efficiency parameter �,

L ¼ �
dM

dt
: (4.53)

If this radiation is in photons, it will exert a force on the
infalling atomic matter of Earth which can be approxi-
mated as given by the Thomson cross section �:

FL ¼ � _M�

4�r2
: (4.54)

The question is whether this can balance the force of
gravity pulling the matter inwards.
We examine this question in more detail in Appendix B.

In short, we do not find evidence for such an Eddington
limit; this is connected to the known result (see e.g. [38])
that spherical accretion onto a black hole is inefficient at
producing a large luminosity.10 Nonetheless, we note that
if a mechanism to produce such an Eddington limit were
found, this would lengthen the shorter accretion time scales
considerably. In particularly, as we review in Appendix B,
four-dimensional Eddington evolution produces exponen-
tial growth of the mass with time, with time constant

tEdd ¼ �
�

4�mG
; (4.55)

10In certain low-collisionality astrophysical contexts, different
from conditions dealt with here, magnetic fields alter this story;
see e.g. [39].
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where m is the average atomic mass per electron, m �
2mp. This produces an e-fold time scale of size tEdd �
2:3�� 108 yr.

F. Summary of growth on Earth

This section has modeled growth laws on Earth, using
conservative assumptions.

The resulting growth times for D � 8 are bounded
below by the many-billion-year time scales given in
Eqs. (4.30) and (4.45); these arise from the subatomic
and superatomic regimes, respectively, and are times that
are long as compared to the expected natural lifetime of the
Sun. At these times, the black holes masses are still in the
range of 1011 gr, and have a growth rate of the order of
300 kW, which gives a bound on possible power output that
is totally negligible in the geologic context.

The case ofD ¼ 7 also gives times longer than the Sun’s
lifetime, with an overall time scale for the evolution,
Eq. (4.50), ranging from 6 to over 80� 109 yr. At such
time scales, the growth rate reaches approximately 10 GW,
about 10�7 the solar flux on Earth, and much smaller than
the �40 TW heat flow from the interior of the planet; this
bounds any possible thermal impact to be negligible. The
case D ¼ 6, with time scale (4.49), even though very long
by human standards, is much shorter than the natural life-
time of the solar system. As we saw, certain warped sce-
narios are also similarly potentially problematic. There-
fore, in order to constrain these scenarios we turn to their
consequences for other astronomical bodies, particularly
white dwarfs and neutron stars.

V. STOPPING OF COSMIC RAY-PRODUCED
BLACK HOLES

Collisions with center-of-mass energies comparable in
energy to LHC occur frequently in the universe. The best
known and directly measured process is the collision of
high-energy cosmic rays (CRs) with the nucleons in the
Earth’s atmosphere. For the collision of a CR of mass Amp

to exceed the nucleon-nucleon center-of-mass (CM) en-
ergy of ELHC ¼ 14 TeV, the CR energy should be at
least EminðAÞ ¼ AE2

LHC=2mp � ð1017AÞ eV, well below

the maximum value of measured CR energies. A simple
estimate of the number of nucleon-nucleon interactions
above LHC energies can be obtained from an approximate
flux relation, derived from the current data [40–42]:

d�

dE
� 106ðE=GeVÞ�3 m�2s�1sr�1GeV�1; (5.1)

which provides a lower bound to the measured CR spectra
in the interesting region ECR > 1017 eV, up to the GZK
cutoff [43,44] of EGZK � 5� 1019 eV. Confining our-
selves to the part of the spectrum below the GZK cutoff,
we obtain the following integrated flux:

Nð ffiffiffi
s

p
> ELHCÞ ¼ A

Z
E>EminðAÞ

d�

dE
dE

� 1:6� 103

A
yr�1km�2sr�1; (5.2)

where
ffiffiffi
s

p
is the CM energy of a nucleon-nucleon collision.

This corresponds to about 1=A� 1022 collisions above the
LHC energy at the surface of the Earth during the course of
its existence. This number greatly exceeds the total number
of collisions in the course of the LHC operations at its
highest intensity (about 109 s�1 over a 108 s period), even
assuming a cosmic ray flux dominated by Fe nuclei.
If black holes can be produced at the LHC, they will

therefore be copiously produced in such CR-induced col-
lisions with astronomical bodies. Thus, stability of such
bodies on astronomically long time scales offers the pros-
pect of ruling out rapid accretion scenarios. In order to
provide such bounds, one needs to check that a CR-
produced black hole will slow sufficiently to be trapped
in such an object, so that it begins accreting. After that, one
needs to check the relevant accretion time scale. This sec-
tion will focus on the former question. We will find that
while, as briefly described in Sec. II B, we cannot guaran-
tee that Earth is an efficient target for trapping hypothetical
CR-produced black holes in all scenarios, white dwarfs and
neutron stars do provide very useful targets.

A. Production kinematics

Let E be the energy of a cosmic ray nucleon hitting
an astronomical target. Black hole production would arise
from collisions of two partons, with center-of-mass mo-
mentum fractions x1 and x2 for incident parton and target
parton, respectively. The mass M of the resulting black
hole is given by

M2 � 2x1x2y
2Emp; (5.3)

where y 
 1 is an efficiency factor, parametrizing inelas-
ticity (energy loss) due to radiation in the collision process,
and mp is the proton mass. The bulk of the production is

at x1 � x2 � x ¼ M=ðy ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Emp

p Þ. After being produced, the
black hole in the fixed-target frame will carry energy

x1yE�M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=2mp

q
, and thus has a Lorentz � factor

� ’
ffiffiffiffiffi
x1
x2

s ffiffiffiffiffiffiffiffiffi
E

2mp

s
: (5.4)

Since x1; x2; y 
 1, Eq. (5.3) gives

� ¼ M

2x2mpy
>M=2mp: (5.5)

The black hole will therefore be highly relativistic. These
boosts range up to typical values of size �� 3M=mp; for

example, in the extreme case of interest for the LHC,
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M ¼ 14 TeV, Fig. 7 shows significant production at � &
4:5� 104.

If the black hole is very weakly interacting, it could
travel across the object unimpeded, thus preventing limits
from being set. We therefore concentrate first on this issue.

B. Stopping: neutral black holes

In line with our discussion of Sec. II A, we will explore
the assumption that black holes interact only via their
gravitational field. Collisions can slow such a black hole
via two mechanisms. First, in a typical collision the black
hole will gravitationally scatter a particle in its asymptotic
field, thus losing some of its momentum. We henceforth
refer to this gravitational mechanism as Coulomb slow-
down. Second, for smaller impact parameters, a black hole
can absorb a particle, in the process possibly emitting some
radiation, and typically increasing its mass. This also slows
the black hole, and will be referred to as accretion slow-
down. In what follows we denote by Ei and pi the energy
and momentum of the black holes at the time of production
by the cosmic ray.

1. Accretion slow-down

For the smallest black holes, such as those in the early
stage of the accretion, the target particles should be thought
of as partons, moving relativistically inside the nucleon. In
the black hole rest frame, denoted by a prime, incident
partons have energy and momentum

E0
p � p0

p � E

M
ðEp � ppÞ; (5.6)

where Ep and pp are the parton energy and parallel mo-

mentum component in the star rest frame. Note that for the
first few collisions E0

p �M, since Ei=M�M=mp �
M=Ep. But as the black hole slows, E0

p becomes much

smaller than M.
If black holes can capture matter via their gravitational

fields and accrete within Earth, then their gravitational
fields will similarly capture and scatter matter while mov-
ing through any astronomical object, and we will con-
sistently work within such a framework. Some general
features of gravitational scattering and/or capture of rela-
tivistic particles in the field of a D-dimensional black hole
are reviewed in Appendix C. There we find the minimum

impact parameter, b̂minR, below which relativistic particles
enter the capture regime. This can be calculated classically,
or defined quantum-mechanically in terms of the capture
cross section,

�c ¼ �ðb̂minRÞ2; (5.7)

with closely corresponding results in the cases of interest.
A capture collision should result in the parton transferring
its momentum and is expected to result in much of the
parton energy also being absorbed, although it is also likely

that some of the parton energy will be radiated in the
process. The change in the black hole mass and momentum
are thus parametrized as

�p0 ¼ cac;pp
0
p; �M ’ �E0 ¼ cac;ME

0
p: (5.8)

We expect cac;p ’ 1, and have 0< cac;M <minð1; cac;pÞ
parametrizing the fraction of energy absorbed.11 Back in
the star frame, the momentum change will then be

�p ¼ cac;ppp � ðcac;p � cac;MÞ E
2

M2
ðEp � ppÞ; (5.9)

where the terms proportional to pp contribute zero when

averaged over different parton momenta. One can combine
these equations with the capture cross section to determine
the accretion contribution to the momentum and mass
variation. For a black hole of velocity v� 1 in a matter
distribution with parton density n, one finds:�

dp

dt

�
ac

¼ n�½b̂minRð
ffiffiffi
s

p Þ�2�p; (5.10)

�
dM

dt

�
ac

¼ n�½b̂minRð
ffiffiffi
s

p Þ�2�M; (5.11)

where

s ¼ M2 þ 2ðEEp � pppÞ þm2
p: (5.12)

This leads to the following evolution as a function of path
length ‘:�

dp

d‘

�
ac

¼ �ðcac;p � cac;MÞb̂2min��
E2

M2
R2ð ffiffiffi

s
p Þ; (5.13)

�
dM

d‘

�
ac

¼ cac;Mb̂
2
min��

E

M
R2ð ffiffiffi

s
p Þ; (5.14)

where we introduced the energy density � ’ nhEpi. We see

that in the limit cac;M ¼ cac;p (‘‘perfect accretion’’), there

is no average momentum transfer.

2. Coulomb slow-down

Consider now the case of gravitational elastic collisions.
For the earliest collisions, R 	 1=p0

p, which is the regime

of classical particle scattering. Once � has decreased by a
factor of approximately ten, the wavelength becomes lon-
ger than R and we enter the quantum regime.
Thus, we consider incident partons outside the capture

regime, classically described by impact parameter b >

b̂minR. The momentum loss of the black hole is

11Indeed, we expect that (chromo-)electrostatic effects signifi-
cantly reduce cac;M, below an energy threshold E0

p � �s=R.
Notice that any energy that is not absorbed must be rerediated,
thus contributing to black hole momentum loss.
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�p ¼ �2
E2

s
ðEp � ppÞsin2 �2 ; (5.15)

where � is the CM scattering angle. (For all but the first
collisions, the CM frame is well approximated by the black
hole frame.) One can then sum over collisions, as in the
accretion case, to obtain the differential momentum loss. In
terms of the differential cross section, this takes the form�

dp

d‘

�
sc
¼ �E2

s
�
Z 1

cos�c

d cos�
d�

d cos�
2sin2

�

2
; (5.16)

where �c � 1 represents the maximum angle avoiding
capture. Here the parton momenta have averaged to zero.
In parallel with (5.13), we write this as�

dp

d‘

�
sc
¼ �cscb̂

2
min��

E2

s
R2ð ffiffiffi

s
p Þ; (5.17)

where

csc ¼ 1

�c

Z 1

cos�c

d cos�
d�

d cos�
2sin2

�

2
; (5.18)

the corresponding classical expression is

csc ¼ 1

b̂2min

Z 1

b̂min

db̂22sin2
�

2
: (5.19)

The parameter csc is estimated in Appendix C, yielding
for the quantum case the values (0.5, 0.25, 0.17) for D ¼
5–7. Note that as a result of b̂min > 1, gravitational
Coulomb scattering plays a subdominant role.

3. Slow-down to �� 1

We now combine the Coulomb and accretion stopping
rates to determine the length required to slow down the
black hole to the non-relativistic regime. As noted, initially
EEp �M2, but as the energy falls, the mass term in (5.12)

dominates. Then the Coulomb and accretion stopping for-
mulas, (5.17) and (5.13), have the same form. Moreover,
dividing (5.14) by their sum, and defining

c0 ¼ cac;M
cac;p � cac;M þ csc

; (5.20)

we find in this regime

dM

dp
¼ �c0

M

E
; (5.21)

with solution

M

Mi

¼
�
p

pi

��c0
: (5.22)

This, together with the dependence RðMÞ ¼
RiðM=MiÞ1=ðD�3Þ, then allows us to integrate the sum
of (5.17) and (5.13) and deduce the distance d to evolve
to a given final momentum p and massM related by (5.22):

Z d
�d‘ ’ 1

csc þ cac;p þ cac;MðD� 5Þ=ðD� 3Þ
� 1

b̂2min

M

�R2ðMÞ
M

p
: (5.23)

The left-hand side defines the column density, ðdÞ, as a
function of d.
The momentum where the black hole becomes near-

relativistic, p � M ¼ MNR, is obtained from Eq. (5.22) as

MNR ¼ Mi

�
pi

Mi

�
cac;M=ðcac;pþcscÞ

: (5.24)

Since, as we have seen, the initial boost �i ¼ pi=Mi is
large, growth of the mass in this phase can be significant.
The corresponding column density is

RðdÞ ’ 1

csc þ cac;p þ cac;MðD� 5Þ=ðD� 3Þ
� 1

b̂2min

MNR

�R2ðMNRÞ
: (5.25)

For rough benchmarks we can replace the right-hand side
byM3

0=�. If we work with constant density, we see that the
stopping distance is then approximated by d� d0 ¼
M3

0=��, as defined in (4.21).

In view of the value for Earth d0ðEÞ � 3� 1011 cm,
these mechanisms cannot efficiently slow down neutral
CR-produced black holes in Earth, or in other bodies
such as planets and ordinary stars.12 For the same reason,
typical black holes produced at the LHC are expected not
to be captured by the Earth (see Appendix F), posing no
risk; however, there is small but finite probability for them
to be produced with velocities small enough to become
gravitationally bound to the Earth and, in the hypothetical
case of stability, to begin accreting.
On the other hand, for a neutron star with densities

surpassing 1014 gr=cm3, one has d0ðNSÞ & 0:01 cm.
Thus neutron stars can promptly slow down such black
holes, and then quickly bring them to below the escape
velocity, which for a neutron star is close to v� 1. Finally,
for white dwarfs, whose central density can exceed � ¼
107 gr=cm3, one finds d0ðWDÞ � 1:5 km, compared to
radii in the 103–104 km range. Thus, in order to establish
stopping in white dwarfs, we need to make a complete
numerical analysis, considering also the nonrelativistic
phase of the slow-down.

12As a consequence of this, neutral black holes produced during
head-on collisions of cosmic rays within the galaxy will freely
escape the galaxy, not being trapped by either collisions with the
interstellar medium and stars, or by the galactic magnetic field.
Therefore arguments such as those used in Ref. [45] to rule out
the production of strangelets do not seem to easily apply in this
context.
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C. Stopping in white dwarfs

Stopping scales in white dwarfs are not enormously far
from their radii, motivating a more complete treatment. We
begin by noting that once a black hole reaches the near-
relativistic regime, p�M, it must be further slowed to
below the escape velocity in order to be trapped. Thus we
must understand nonrelativistic slowing.

We consider white dwarfs with masses M � M�, which
have radii RWD � 5500 km. Such a white dwarf has an
escape velocity vWD � 2� 10�2. The material in such
white dwarfs is described as a fluid of degenerate electrons
in which are embedded atomic nuclei, for example, carbon
and oxygen. (Later, at time scales �Gyr, this material can
crystallize.)

1. Nonrelativistic stopping

At the end of the relativistic regime, the black hole has a
mass MNR � p given by (5.24). In addition to R, capture
dynamics can in principle be governed by the capture
radius for free particles, R=v or REM, defined using white
dwarf parameters, aWD � 10�10 cm. However, in the re-
gime v * :02, these radii are all less than or of order rN
(see Appendix D), so the capture is dominantly subnuclear.

As the black hole moves through the stellar material, it
collides with nucleons at a rate

dn

dl
¼ �

�

mp

r2N: (5.26)

When a collision occurs, it moves nonrelativistically
through the nucleon. As it does so, it is bombarded by
the relativistic partons within the nucleon. The average
mass and momentum collected during such a transit is
given using (5.10) and (5.11), times the average time �t ¼
4rn=3v of the transit; combining with (5.26) gives

dp

d‘
¼ �ðcac;p � cac;MÞb̂2min��R

2; (5.27)

dM

d‘
¼ cac;Mb̂

2
min��

R2

v
: (5.28)

Note two possible caveats to these formulas. First, in a
collision with a single nucleon, �M cannot be bigger than
mp. We show that this is true in Appendix D. Second, there

could be enhancements of �M due to the fact that if the
black hole captures a parton, the QCD string can pull in
more energy, whether or not it breaks. (Moreover, since
most of the nucleons are in nuclei, it may even be that it
pulls in more of the nucleus.) Indeed, one might expect a
minimum energy captured of �100 MeV if the BH cap-
tures one parton. Let us, however, stick with this simple
and conservative estimate.

Coulomb stopping may be suppressed in this regime,
and we conservatively neglect it. As before, one can find an
equation relating M and p:

�
M

MNR

�
1�cac;M=cac;p ¼

�
p

MNR

��cac;M=cac;p
: (5.29)

Thus, for ‘‘perfect accretion,’’ p remains a constant. We
also find

v ¼
�
M

MNR

��cac;p=cac;M
: (5.30)

One can then integrate (5.28) to find the column density
to a given final mass Mf:

NRðdÞ ¼ 1

cac;Mb̂
2
min

Z Mf

MNR

dM

�R2

�
MNR

M

�
cac;p=cac;M

: (5.31)

This can be evaluated using the scaling (3.16) of R withM,
to find the distance travelled to reach mass Mf:

NRðdÞ¼ 1

cac;p�cac;MðD�5Þ=ðD�3Þ
1

b̂2min

�
�
1�

�
MNR

Mf

�½cac;p=cac;M�ðD�5Þ=ðD�3Þ�� MNR

�R2ðMNRÞ
;

(5.32)

an evolution law governed by larger velocities. Note that
this gives the same scale as the evolution to MNR, as in
(5.25). This is of course a conservative scale, since we have
completely neglected any momentum loss due to scatter-
ing, and also have neglected possible enhancements due to
binding effects with nuclear fragments.

2. Stopping bounds

From these equations we can compute the column den-
sities necessary for stopping. We first note that, by virtue of
the fact that �i ¼ pi=Mi is large, the stopping distance
grows with increasing cac;M=cac;p, due to the exponential

dependence in (5.24). Therefore, we set it to its maximum
value, cac;M ¼ cac;p.

13

Notice also that stopping distance increases with de-
creasing csc. Thus, one is tempted to set this to zero.
However, even small csc plays an important role. Specif-
ically, consider the bound on the nonrelativistic stopping,

NRðdÞ< D� 3

2cac;pb̂
2
min

MNR

�R2ðMNRÞ
: (5.33)

To test its sensitivity to our physical expectation cac;p ’ 1,

let us see how much the column density for given csc
changes if we take cac;p ¼ 1=4, as compared to its value

13We note that this appears quite conservative, in that we expect
cac;M to become small below the (chromo-)electrostatic thresh-
old mentioned previously. This in turn would significantly re-
duce the effective value of M=R2 that enters the expressions
(5.25) and (5.32) for the needed column densities.
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for cac;p ¼ 1 and csc ¼ 0. Note from cac;M 
 cac;p that

this would correspond to a reduction in the mass accretion
rate of 1=4. From (5.33) we easily find less than 25%
variation in the resulting bound on NR as long as

csc >
1

4

1

ðD� 5Þ ln�i=½ðD� 3Þ lnð16=5Þ� � 1
: (5.34)

The tightest constraints on stopping parameters arise for
largest Mi and thus, as we see from (5.5), large boost.
Using that equation, or alternately from Fig. 7, we see
that there is a large production efficiency for �i &

3Mi=mp, or with Mi ¼ 14 TeV, around �i � 4:5� 104.

Thus, we find the variation of the stopping distance
bounded in this fashion so long as csc > ð:12; :07Þ for D ¼
6, 7. Moreover, this bound neglects the fact that any
reduction of cac;p, corresponding to a reduction of accre-

tion, should lead to an increase of scattering, parametrized
by csc, thus improving the bound. These features arise from
the exponential dependence in (5.24); a similar statement is
slightly stronger for R, as a consequence of its additional
dependence on csc through its denominator. Rough values
of csc for D ¼ 6, 7 are given (see Appendix C) by (.25,

.17). Thus, in addition to the physical expectation cac;p ’
1, we find the statement that even for small csc, one does
not increase the stopping distance by varying cac;p over a

wide range. We thus take csc ¼ 0 and cac;p ¼ 1, and will

rely on the resulting column densities to not be more than
25% higher, although we expect that they could be signifi-
cantly lower.
Taking these values and combining our bounds from

(5.25) and (5.33), we find

TðdÞ ¼ RðdÞ þ NRðdÞ< ðD� 3Þ2
2ðD� 4Þ

1

k2=ðD�3Þ
D �b̂2min

�
�
MD

M0

�
3
�
�iMi

MD

�ðD�5Þ=ðD�3Þ
M3

0: (5.35)

The column density M3
0 converts to 4:6� 1012 gr=cm2.

For our numerical estimates here we shall confine our-
selves to black holes produced with �i & 3Mi=mp, as

above. Since the evolution is dominated by the phasewhere
the wavelength of the incident particle is large compared to
the black hole radius, we use the values of the parameters

b̂min corresponding to the quantum absorption, as given in

TABLE I. Column densities T , in units of 1015 gr=cm2, required to stop a black hole of given masses.

T=10
15 gr=cm2 D ¼ 5 D ¼ 6 D ¼ 7 D ¼ 8

M ¼ 7 TeV 0.09 0.65 1.8 3.3

M ¼ 8 TeV 0.13 1.0 2.9 5.3

M ¼ 9 TeV 0.19 1.5 4.3 8.2

M ¼ 10 TeV 0.25 2.1 6.2 11.9

M ¼ 11 TeV 0.34 2.9 8.7 16.8

M ¼ 12 TeV 0.44 3.9 11.8 23.0

M ¼ 13 TeV 0.56 5.1 15.6 30.7

M ¼ 14 TeV 0.70 6.5 20.2 40.0

FIG. 1. Left: density profile for a solar-mass white dwarf (courtesy K. Shen). Right: column density, as a function of the penetration
angle � with respect to the zenith, normalized to the column density at � ¼ 0.
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Appendix C 2. To maximize the needed column density, we
also use the maximum value of MD corresponding to a
given mass Mi, namely MD ¼ Mi=3. Equation (5.35) then
leads to the maximum column densities shown in Table I
for various black hole masses.

Integration of the column density of aMWD ¼ M� white
dwarf along a diameter, using the density profiles shown in

Fig. 1 [46], yields a column density WD ¼ 2
RRWD

0 �d‘ ¼
13� 1015 gr=cm2. This number increases to WD ¼ 21�
1015 gr=cm2 for MWD ¼ 1:1 M�, and to WD ¼ 38�
1015 gr=cm2 for MWD ¼ 1:2 M�. The systematic uncer-
tainty on these values, determined by varying the pa-
rameters of the white dwarf such as temperature and
composition, is of the order of 10% [47].

A comparison between the required stopping column
densities and the available stopping power of white dwarfs
is shown in Fig. 2.

We thus conclude that a solar-mass white dwarf can
efficiently stop black holes. In the case of D ¼ 5 and 6,
black holes corresponding to the most conservative LHC
scenario, with masses up to 14 TeV and MD accordingly
large, will stop within a fraction of the maximum column
depth for white dwarfs at or above M�. In the case of D ¼
7, one needs stars heavier than approximately 1.1 solar
masses in order to achieve stopping up to 14 TeV. However,
as indicated in Sec.IVC5, D ¼ 7 black holes above 6 TeV
give rise to accretion lifetimes on Earth in excess of 20�
109 yr years. Our calculated stopping column densities for
masses below this are well below the column density of a
solar-mass white dwarf.

As shown in Table I, the column densities required to
stop the heaviest black holes for D � 8 exceed the stop-
ping power of even the most massive white dwarfs, and

therefore we shall only state empirical constraints on such
scenarios when discussing the neutron stars case.

VI. BLACK HOLE PRODUCTION ON
WHITE DWARFS

In this section we briefly describe the expected rates of
black hole production on white dwarfs; for more details see
Appendix E. Before discussing such production rates,
however, we must discuss the effects of magnetic fields.

A. Magnetic screening

White dwarfs and neutron stars are known to have
significant magnetic fields, which can have important ef-
fects on the charged cosmic-ray primaries. (For more de-
tails see Appendix G.) For example, in the case of a dipole
field of polar strength Bp, an incident ray of charge Ze and

momentum p perpendicular to the magnetic axis will have
a Larmor radius that depends on the distance r from the
center of the object as follows:

rLðrÞ ¼ 2p

ZeBp

�
r

R0

�
3
; (6.1)

where R0 is the radius at the surface. While even for
neutron stars rL can be greater than the radius of the star,
as shown in Appendix G, with the very high-energy cosmic
rays required one must consider the effects of synchrotron
radiation. This is studied in more detail in Appendix G,
with the result that a ray at incident angle � and with mass
number A will have an energy at R0 determined in terms of
its incident energy E1 by

ER0
¼ Emax

E1
E1 þ Emax

; (6.2)

where

Emax ¼
60A4m4

p

2ðZeÞ4ðsin�BpÞ2R0

: (6.3)

Thus, Emax sets an effective maximum energy for cosmic
rays that penetrate to the surface of the star; for protons,
and normalizing to typical white dwarf parameters, we
find that

Emaxð� ¼ �=2Þ ¼ 3:6� 1018 eV
5000 km

R0

�
106G

Bp

�
2
:

(6.4)

Since, as we will find, optimal bounds come from consid-
ering cosmic-ray energies up to �1020 eV, we see that in
order to avoid significant magnetic screening, we must
consider white dwarfs with magnetic fields Bp & few�
105 G. Bounds from stars with larger fields are still achiev-
able, since cosmic rays incident at angles closer to the
magnetic poles will experience reduced energy loss, but
this leads to a reduction of rates for acceptable cosmic rays

FIG. 2. Column densities required to stop black holes of
different masses in different space-time dimensions D (solid
lines) and integral column densities for white dwarfs of mass
MWD ¼ ð1; 1:1; 1:2Þ solar masses.
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(see Appendix G). We will return to the question of mag-
netic fields for neutron stars, where we will find them to be
somewhat more problematic.

B. Production rates

Production rates can be computed using the known
fluxes of cosmic rays, together with cross sections obtained
by convolving parton-level cross sections with parton dis-
tribution functions. We will briefly summarize these cal-
culations here; more details are supplied in Appendix E.

The basic parton-level production cross section is of the

form � � �R2ð ffiffiffî
s

p Þ, where ffiffiffî
s

p
is the CM energy of the pair

of partons forming the black hole. This is only an estimate;
one must take into account that not all the collision energy
is captured by the black hole, and even less is captured as
impact parameters grow comparable to Rð ffiffiffî

s
p Þ. Thus, to be

more precise, we account for this via an inelasticity factor,
y; we conservatively summarize trapped-surface calcula-
tions of the inelasticity [48–51]14 by a simple dependence
like that in [8]

EBH ¼ y
ffiffiffî
s

p
; b < 0:5R; EBH ¼ 0; b > 0:5R: (6.5)

To be conservative for cosmic-ray production rates, we use
a lower than expected value, y ¼ 0:5 [8], for the inelastic-
ity. This corresponds to a limit of 7 TeV for the maximum
value of black hole mass that can be produced at the LHC.
The actual value of ymay be higher, and its reach could be
slightly extended due to quantum fluctuations. For this
reason we also consider values in the range 0:5< y < 1
(the upper limit being an unrealistic extreme [8,51,53]) to
allow for black hole production at the LHC all the way up
to the largest available energy, namely 14 TeV. In making
the estimates of cosmic-ray production rates we shall con-
servatively choose the value of y corresponding to the
smallest possible inelasticity compatible with produc-
tion of a given mass value at the LHC, namely y ¼
Mmin=14 TeV. Furthermore, again to be conservative in
our rate estimates, we take the minimum black hole mass
to be Mmin ¼ 3MD; for example, [5] used as a benchmark
the less-conservative value M ¼ 5MD.

The resulting cross sections are then convoluted with the
CTEQ6M [54] parton distribution functions. The resulting
nucleon cross sections are, in turn, convolved with the
measured ultrahigh-energy cosmic-ray flux, extracted from
the latest Auger spectra [40]. In the case of cosmic-ray
primaries that are nuclei of mass number A, one must also
use a nucleon energy reduced by this factor. The rate
calculations of Appendix E are carried out for two test
cases: that of incident protons, and that of incident iron
nuclei (A ¼ 56). Partial results are summarized in Table II,
for production on a white dwarf of radius 5400 km, and
more results are presented in Appendix E. (In that appen-
dix we also present figures resulting from a 20% hypothe-
sized overestimate of cosmic-ray energies, to model the
quoted Auger energy resolution of �20% [40,55].)
According to the stopping calculations of Sec. V, not all

cosmic-ray-produced black holes are stopped by a white
dwarf. In order to allow for sufficient column density, we
must require the cosmic rays to reach the white dwarf at an
angle sufficiently close to the azimuth as to force the black
hole to traverse a sufficient fraction of the full column
density of the star. The angular dependence of the column
density is shown in the right plot of Fig. 1. In the case of
D ¼ 5, our calculated column densities required for stop-
ping are a mere few percent of those available and we can
therefore easily accept a reduction to 10% of the available
column density. In the cases of D ¼ 6 and 7, to be con-
servative we can allow for at least 30% and 80% of the full
available column density, leading to a reduction of the
useful cosmic-ray flux to a level of 10% and 2%, respec-
tively. Multiplying these efficiencies by the number of
events given in Table II, and integrating over a period of
107 yr, leads to total numbers of accumulated black holes
larger than 5000, even in the totally extreme case of 100%
Fe composition of the cosmic rays. Notice that even in the
most conservative case of rates obtained for M ¼ 14 TeV
with y ¼ 0:5 (see Table VII in Appendix E 2), the number
of events in 5� 107 yr still exceeds 100 for each value of
D.

VII. BLACK HOLE CATALYSIS OF
WHITE DWARF DECAY

The conclusion of the preceding sections is that white
dwarfs with solar-size masses, as well as neutron stars,
have sufficient ability to stop a cosmic-ray-produced black

TABLE II. Black hole production rates, per million years, induced by cosmic rays impinging on a R ¼ 5400 km white dwarf. Np

refers to the case of 100% proton composition, NFe refers to 100% Fe. MD ¼ Mmin=3 and y ¼ Mmin=14 TeV.

D ¼ 5 6 7

Np=Myr, Mmin ¼ 7 TeV 2:1� 107 4:3� 107 6:7� 107

NFe=Myr, Mmin ¼ 7 TeV 7:2� 104 1:6� 105 2:6� 105

Np=Myr, Mmin ¼ 14 TeV 2:3� 106 5:9� 106 1:0� 107

NFe=Myr, Mmin ¼ 14 TeV 7:3� 103 2:1� 104 3:8� 104

14We also note that the refined estimates in [49], which are
based on perturbatively calculated radiation, have in the case of
zero impact parameter recently been checked via numerical
relativity techniques [52], with good agreement.
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hole, and that significant production rates for such black
holes can, in particular, be achieved on white dwarfs. We
will seek bounds from the statement that any stable black
holes that could be produced on Earth will be produced and
trapped in cosmic-ray collisions with these astronomical
objects. The remaining problem is to examine the subse-
quent evolution.

We have, in particular, argued in Sec. VC that a black
hole will be brought to zero velocity, largely through
accretion and scattering, deep within a white dwarf. By
this time the mass of the black hole may grow significantly
from its initial value. The surrounding medium consists of
nuclei, for example, carbon and oxygen, embedded in a sea
of relativistic degenerate electrons. A lower bound on the
relative velocities between the black hole and these nuclei
is given by the thermal velocity; for temperatures* 107K,
these are at least of size vT * 3� 10�4. At times
Oð0:6 GyrÞ white dwarf cores begin to crystallize, but we
will find accretion to be relevant well before this time.

A. Subatomic accretion

A small black hole will only exert an influence when
within the nucleus, as described by our ‘‘bag-model’’ dis-
cussion in Sec. VC 1. However, once larger it will have a
longer-scale influence. In general its gravitational force
must compete with electrostatic forces between the nuclei
and their surroundings. We can estimate these forces as in
the discussion of atomic matter on Earth—a displacement
of a nucleus from its equilibrium position is expected to
produce a dipole force resulting from interactions with
the ambient electron cloud, and this is estimated to be
of a size given by (4.6), where one uses the typical
internuclear separation aWD � 10�10 cm corresponding
to � � 107 gr=cm3. This leads to a characteristic electro-
magnetic capture radius REM as given in (4.10), with �D

given by (4.11), together with the approximate value

K

mM2
0

� 1:2� 10�18: (7.1)

For a black hole evolving fromM�MD, the radius REM

will initially be smaller than both the nuclear scale and the
velocity-dominated capture radius R=v. One can readily
check when REM exceeds the latter; this happens at

REM ¼ R=vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� 3ÞðD� 1ÞD�1

2ðD� 2ÞD�2

s ffiffiffiffi
m

K

r
vðD�3Þ=2
T : (7.2)

Thus, for D � 6, by the time REM reaches �1 fm it gov-
erns capture, though forD ¼ 5 there is a brief phase where
R=vT > 1 fm governs the capture rate. Both the subnuclear
phases and this phase are governed by very short time
scales.

Wewill focus on cases where RD > aWD, as they include
scenarios with short evolution times on Earth. These, in
particular, include the nonwarped cases of D ¼ 6, 7. The

evolution time up to the scale REM ¼ aWD is then given by
d=vT , with d the electromagnetic evolution distance given
in (4.22). This yields time scales for this phase

tEM ¼ 1:5� 10�7s

�
MD

M0

�
3
; D ¼ 5; (7.3)

tEM ¼ 0:09s

�
MD

M0

�
4
; D ¼ 6; (7.4)

tEM ¼ 6� 104s

�
MD

M0

�
5
; D ¼ 7; (7.5)

which are quite short.

B. Bondi accretion

Once REM > aWD, one enters the Bondi accretion
phase. Since, by assumption, RD > aWD, this is initially
D-dimensional up to RD, and then four-dimensional be-
yond RC. In cases with warping, there can also be a warped
phase intermediate between RD and RC.
Consider first the unwarped cases, with D ¼ 6, 7. The

relevant time scales are given by Eqs. (4.43) and (4.48) for
evolution up to RD, and from RC onward. To be conser-
vative, we now model the transition phase between RD

and RC by assuming the slowest evolution, namely, a
4-dimensional growth, with a constant Bondi radius equals
to RD, until the mass reaches the value corresponding to
RB ¼ RC. This gives an evolution time scale:

t ¼ d0cs
16�½4�ðD� 3ÞkD�1=ðD�4Þ


D

�
�
MD

M0

�ðD�2Þ=ðD�4Þ�M4

M0

�
2ðD�5Þ=ðD�4Þ

: (7.6)

The evolution time scales are determined by the white
dwarf parameters (for a M ¼ M� white dwarf [56]) d0 �
1:4� 10�6s and cs � 1:4� 10�2. The combination d0cs
has a value that is approximately 1:5� 10�4 times the
Earth’s value (4.44). The resulting time scales will there-
fore be comparatively shorter:

tðRB < RDÞ ¼ 8
1


6

�
MD

M0

�
2
yr; D ¼ 6; (7.7)

tðRD < RB < RCÞ ¼ 4� 102
1


4

�
MD

M0

�
2
yr; D ¼ 6;

(7.8)

tðRB > RCÞ ¼ 15
1


4

�
MD

M0

�
2
yr; D ¼ 6; (7.9)

tðRB < RDÞ ¼ 1:3� 105
1


7

�
MD

M0

�
5=3

yr; D ¼ 7;

(7.10)
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tðRD < RB < RCÞ ¼ 6� 107
1


4

�
MD

M0

�
5=3

yr; D ¼ 7;

(7.11)

tðRB > RCÞ ¼ 1:9� 106
1


4

�
MD

M0

�
5=3

yr; D ¼ 7:

(7.12)

Taking the largest value of relevance for the LHC, MD �
4:7 TeV, and using the value of 
D appropriate for a
relativistic electron gas, the longest possible phase of the
evolution in D ¼ 7 does not exceed 8� 107 yr. We recall
that, in this largest-M condition, the Earth’s lifetime for
D ¼ 7 exceeds 1010 yr years by a large margin. We also
notice that if we consider the case of more massive and
thus denser white dwarfs, the time scales are reduced. For
example, the central densities of white dwarfs of mass
M ¼ 1:1 M� and M ¼ 1:2 M� are 2 and 4 times, respec-
tively, larger than forM ¼ M� [56], leading to accordingly
shorter evolution times.

From this analysis we conclude that Bondi accretion
time scales for the unwarped D ¼ 6, 7 scenarios are quite
short, especially as compared to known white dwarf life-
times that exceed 1 Gyr. We have argued in Appendix B
that these are not modified by an Eddington limit, at least
until accretion macroscopically disrupts the star. If there
were an Eddington limit, Appendix B argues that one is
even more likely to find one for Earth. Moreover, as dis-
cussed in Appendix B, radiation of an ensemble of black
holes at Eddington fluxes would interfere with white dwarf
cooling, providing an independent argument against this
possibility. We note, parenthetically, that in the true macro-
scopic regime, when the black hole starts to exert large-
scale effects on its host body, the evolution may well not be
Bondi, but in any case would disrupt the object in question.

C. Generalized scenarios

We next consider a more general warped scenario, with

RC * 15 �A. In this regime, we find from (3.26) that
RC=RD & 20, so RD > aWD. The growth will then be
governed by Bondi evolution that is D-dimensional up to
RD, warped between RD and RC, and four-dimensional
between RC and large mass.

For RD � RC, the bound on the first phase is signifi-
cantly smaller than the other two. As discussed in the case
of accretion in Earth, the evolution in the warped regime in
general involves a large change in mass in a relatively
small change of radius. For such a slow-growth law, the
growth time is governed by the upper limit of the radius
range, RB ¼ RC. This implies that the time scale for
growth through this phase is given by

tw � MðRCÞ
��csR

2
C

¼ 16�csd0

4

�
M4

M0

�
2 1

M0RC

: (7.13)

The time for growth from RC to large mass is the same,
from (4.41). For RC * 15 �A, this yields time scales tWD &
5� 106 yr. In fact, even in the unrealistic case of evolution
via a constant radius relationship RB ¼ RD over the entire
warped range up to just below RC, this would only enhance
this time scale by ðRC=RDÞ2 � 400, and thus the slightly

larger value RC * 30 �A would still be in the range con-
strained by experimental bounds ( & 1 Gyr). Indeed, one
can directly compare the white dwarf evolution in the
range near RB ¼ RC to that on Earth; from (4.41) we find

tEarth
tWD

� d0ðEarthÞcsðEarthÞ
d0ðWDÞcsðWDÞ


4ðWDÞ

4ðEarthÞ : (7.14)

Taking for example � ¼ 5=3 for Earth and � ¼ 4=3 for a
white dwarf, this yields a ratio of accretion times

tEarth
tWD

� 1:9� 104: (7.15)

D. Summary of white dwarf constraints

This and the preceding sections have argued that in the
hypothetical TeV-scale gravity scenarios possibly relevant
to LHC, (1) cosmic rays will produce significant numbers
of black holes on white dwarfs of low ( & few� 105 G)
magnetic fields, on time scales short as compared to known
white dwarf lifetimes; (2) such black holes, even if neutral
and with the highest masses accessible at the LHC, will be
stopped on white dwarfs with masses M * M�, by accret-
ing and scattering the dense matter of the star during their
transit; and (3) the white dwarf will then be accreted.
Accretion of a white dwarf has been argued to be more
rapid than that of Earth. Different considerations reinforce
this statement. First, before the �Gyr time scale, white-
dwarf matter is in a liquid form, in contrast to significant
solidity of matter in Earth. Second, white dwarfs pack the
mass of the Sun into a region the size of the Earth, so are
much more dense, and have much higher internal pres-
sures, assisting accretion.
Several surveys of low-magnetic-field white dwarfs ex-

ist in the literature. The use of Zeeman spectropolarimetry,
in particular, has allowed detection of fields down to the
level of a few kG. White dwarf masses are determined by
spectral measurements of surface gravities, with parallax
and gravitational redshifts serving as cross-checks; see e.g.
[57,58]. Ages are determined through white dwarf cooling;
a textbook account appears in [59], with further discussion
in [58,60,61]. Several known white dwarfs satisfying
our criteria of mass M * M�, Bp & few� 105 G, and

age T * 100 Myr can be found, for example, in [62–65].
When not given explicitly, the ages can be inferred
from the mass-temperature relations, as discussed e.g. in
[60,61]. Some examples of relevant stars are15

15Where B‘ appears, it represents the measurement of the
average longitudinal field, B‘, whose definition and relation to
Bp can be found, e.g. in [62].
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(i) WD0346� 011 [62,64], with parameters M ¼
1:25 M�, Bp < 1:2� 105 G, and T � 100 Myr;

(ii) WD1022� 301 [64], with M ¼ 1:2 M�, Bp <
1:2� 105 G, and T * 100 Myr;

(iii) WD1724� 359 [64], with M ¼ 1:2 M�, Bp <
1:2� 105 G, and T � 150 Myr;

(iv) WD2159� 754 [64], withM ¼ 1:17 M�,
16 Bp <

3� 104 G, and T � 2:5 Gyr;
(v) WD0652� 563 [64], with M ¼ 1:16 M�, Bp <

2:7� 105 G, and T � 100 Myr;
(vi) WD1236� 495 [64], with M ¼ 1:1 M�, Bp <

3� 104 G, and T * 1 Gyr;
(vii) WD2246þ 223 [62], with M ¼ 0:97 M� [65],

B‘ ¼ 1:5� 13:8� 103 G, and T � 1:5 Gyr;
(viii) WD2359� 434 [63], with M ¼ 0:98 M� [64],

B‘ ¼ 3� 103 G, and T � 1:5 Gyr.
The above arguments thus state that comparison of

respective accretion rates, together with survival of white
dwarfs to observed time scales * 108 yr, implies survival
of Earth for a significantly longer time, and, in particular,
longer than the natural solar lifetime.

Finally, as in Sec. IVC 4, we can estimate the lifetime of
a white dwarf, should it capture a minimum-mass primor-
dial black hole. With Bondi evolution from the correspond-
ing initial radius, one finds a lifetime � 1:8 Gyr.

VIII. BOUNDS FROM NEUTRON STARS

A. Production on neutron stars

Neutron stars are very common in the Universe, and in
fact provide robust examples of long-lived objects in other
galaxies. They also represent the highest known densities
of matter that have not undergone gravitational collapse to
a black hole. Since they are particularly close to densities
beyond which black holes are expected to form, one might
expect that introduction of a microscopic stable black hole
into a neutron-star would rapidly catalyze its decay into a
macroscopic black hole. The known stability of NSs, with
lifetimes significantly exceeding 109 yr, therefore offers
the prospect of limits on microscopic black hole stability
and accretion power.

However, known neutron stars have strong magnetic
fields, which are observed to range upwards from
�108 G. In the case of a field of 108 G and a radius R0 ¼
10 km, (6.4) yields a maximum energy 1:8� 1017 eV for
protons impinging perpendicular to the field axis, giving
collisions just above the LHC CM energy; the maximum
energy is only about 16 times higher for heavy elements.
One can avoid this limit for cosmic rays incident near the
magnetic poles, but the acceptance for protons of energies
in the optimal range of �5� 1018 eV is estimated in

Appendix G to lead to a reduction of acceptable flux by a
factor of approximately 10�3, considerably weakening the
resulting bounds.

1. Production in binary systems

This suppression suggests we consider a more reliable
way to inject CR-produced black holes into a neutron star.
Many NS binaries are known, and, in particular, parame-
ters and evolution of low-mass binaries are well under-
stood. Moreover, in such binaries, the companion to the NS
can subtend a significant solid angle in the sky of the NS, as
described in Appendix H 1. Cosmic rays which would hit
the NS but whose direction intersects the companion will
therefore scatter on the companion. In our TeV-scale grav-
ity scenarios, part of the time they will therefore convert to
black holes, which then impact the neutron star. Since we
only need bounds if stable black holes are neutral, the
magnetic field of the NS is irrelevant for these. Such a
production mechanism produces a ‘‘full-coverage equiva-
lent’’ (FCE) given by

FCE ¼
Z

dt
��ðtÞ
4�

; (8.1)

where �� is the solid angle subtended by the companion,
and where we allow for time dependence due to evolution
of the binary system. In order to compute the actual pro-
duction rate on the neutron star, we use the uncorrected
rates of Appendix E, times the number of years of FCE. A
survey of known classes of binary systems (see Appen-
dix H 1) reliably yields FCE’s in the 2 Myr range, resulting
from systems with a 1 Gyr lifespan. The neutron-star
production rates are exhibited in Table IX and in Fig. 8
of Appendix E 2. A summary of that table, focusing on the
most interesting cases ofD � 8, is shown here in Table III.
We find that in the example of a flux of even only 10%
protons, we have a rate for the extreme case of 14 TeV
black holes that is � 5=Myr, and so 2 Myr of FCE would
indicate that typical such systems have experienced suffi-
cient black hole production to initiate the accretion. Less-
extreme (and still quite robust) binary scenarios provide
significantly higher rates. However, a greater dominance of
heavy elements reduces the range of such bounds.
At energies below the GZK cutoff, there are indications

of a significant component of heavy elements. There are
both theoretical and experimental indications that one

TABLE III. Summary of black hole production rates, per mil-
lion years, induced by proton cosmic rays impinging on a R ¼
10 km neutron star. MD ¼ Mmin=3 and y ¼ Mmin=14 TeV.

D ¼ 8 9 10 11

Mmin ¼ 7 TeV 323 422 526 633

Mmin ¼ 10 TeV 129 172 218 265

Mmin ¼ 12 TeV 80 109 139 171

Mmin ¼ 14 TeV 54 74 95 118

16See, however, [66] for a photometric determination of the
surface gravity, leading to a lower mass value. Parallax deter-
minations of the absolute distance are underway to confirm the
mass assignment.
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transitions to a significant proton component at the GZK
cutoff. On the theoretical side one can cite both the match
of the observed spectrum to that from models of proton
acceleration, and expectations that gamma-ray bursters
(GRBs) and active galactic nuclei (AGN) primarily accel-
erate protons (see [67–69] for more discussion.) On the
experimental side, indications of a predominantly light
composition include both measured penetration depths of
showers [70,71] and, most recently, correlations of arrival
directions with known AGN [72,73] (see however [74]).
Thus, while not all scenarios are definitively eliminated by
such a bound, it appears likely that these bounds will be
strengthened with future data on composition.

2. Production via cosmic neutrinos

Primary cosmic rays propagating through the 3K cosmic
microwave background photons will experience significant
interactions above the GZK energy � 5� 1019 eV. These
interactions produce a ‘‘guaranteed’’ flux of neutrinos (see
e.g. [68,75,76]), which avoid the synchrotron losses of
charged cosmic rays. Using these fluxes, Appendix E cal-
culates production rates on neutron stars. For example, in
the very conservative scenario of requiring black holes to
have 14 TeV mass, and using both D ¼ 5 and our most
conservative inelasticity assumptions, y ¼ 0:5, one finds
production rates * 5000=Myr, as shown in Table X.

These thus suggest a very robust bound for production
on neutron stars. While we believe it is quite good, we will
not take this bound with absolute certainty, for two reasons.
First, while the physics of the GZK effect is quite robust,
and moreover appears to be in the process of being experi-
mentally confirmed via correlations of the highest-energy
cosmic rays with AGN [72,73], experiments have not
reached sensitivity sufficient to measure the cosmic neu-
trino flux.17 Second, there exist proposals that baryon
number conservation is enforced in higher-dimensional
brane-world models through reduced interactions between
neutrinos and quarks by virtue of these living on different
branes [78]. While these models are not compelling, they
would seem to raise a small possibility that neutrino cos-
mic rays would not produce black holes the same way that
nucleons do.

B. Catalysis of neutron-star decay

Because of the immense pressures inside a neutron star,
one expects introduction of even a microscopic black hole
to rapidly catalyze its decay. To understand this process,
we note that neutron stars have different layers, a crust
extending to a depth of �1 km, and under this, matter at
nuclear densities. Since treatment of accretion is simplest

in this inner region, we would like to understand whether a
BH can penetrate to this distance.

1. Penetration to core

The slowing distance (5.25), together with a subsequent
phase of slow-down to subescape velocities, v & 0:1c,
may or may not permit penetration to depths * 1 km,
depending on details. Note that the characteristic distance
d0 can be rewritten in appropriate nuclear units as

d0ð�Þ ¼ 9� 10�4 cm=�½mp=fm
3�; (8.2)

and that crustal densities range from 10�6–10�1mp=fm
3.

Even if penetration does not occur during slow-down,
there is a different argument that it takes place on rapid
time scales. To see this, instead assume that a sufficiently
slow black hole could become temporarily bound in the
crust, by absorbing a parton and thus binding to the me-
dium by strong forces. This binding should, however, be
temporary, as the scenario we wish to constrain is that
where black holes do not remain charged, but instead
discharge through Schwinger production. Even ignoring
this, if a black hole is bound to a nucleon via the color
force, it will absorb the remaining partons of the nucleon,
and thus become color neutral, on a relatively short time
scale. One can readily estimate this time scale. A nucleon
has a parton density of order 1=fm3, and partons within the
nucleon travel at speeds � c. With the smallest possible
absorption cross section, of order �� �=TeV2, we find a
characteristic absorption time tabs � 107 fm.
The neutralized black hole will then continue to fall in

the net gravitational field of the neutron star until another
such binding/neutralization event. The characteristic dis-
tance between such events is

dfree � 8x� 10�7 cm

�½mp=fm
3�r2c½1=TeV�

; (8.3)

where x parametrizes the typical nucleon energy fraction
per parton, and we have expressed the capture radius rc in
TeV�1 units. The corresponding time between such colli-
sions is given by

tfree �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dfree=gNS

q
; (8.4)

where gNS is the gravitational acceleration near the surface
of the neutron star,

gNS � GMNS

r2NS
: (8.5)

This characteristic time scale is much longer than tabs, and
thus sets the speed with which the black hole can penetrate
the crust. The corresponding average velocity is

vav � dfree
tfree

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gNSdfree=2

q
: (8.6)

The mean free path dfree reaches a minimum near the
bottom of the crust, and consequently the average velocity
is slowest there. We can therefore bound the crust pene-

17Suggestions that models with extra dimensions suppress
neutrino fluxes [77] do not appear relevant to the scenarios for
which we require bounds.
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tration time by using � ¼ mp=fm
3 to derive a minimum

gravitational drift velocity and time:

tcrust & dcrust=vav½� ¼ mp=fm
3� � 10src½1=TeV�: (8.7)

Thus the black hole should rapidly penetrate the crust and
enter the neutron-fluid region of the core.

2. Accretion from within a neutron star

Like in atomic matter, one might expect different phases
for black hole accretion within a NS, depending on the
relative range of the black hole’s influence as compared
to the radii RD, RC representing crossover to lower-
dimensional behavior, and as compared to 1 fm, the char-
acteristic separation between nucleons, which delineates
the crossover from microscopic to macroscopic absorption
in the NS context.

To better understand these points, let us begin by com-
paring the force due to a black hole to typical forces
between the neutrons in the NS, which are of size GeV/fm.
Specifically, the force on a nucleon of mass mp at distance

r is of order

FG ��mp

r

�
R

r

�
D�3

: (8.8)

Equating this to the typical nuclear force, we find that
gravity beats such a force at scales

RN ¼ R

�
rN
R

�
1=ðD�2Þ

; (8.9)

which are only moderately larger than the Schwarzschild
radius in the regime R< rN . Thus a conservative (i.e., for
the purposes of NS evolution, slow) estimate of the evolu-
tion is given by simply taking the capture radius in (4.1) to
be rc ¼ R in the subnuclear regime R< rN. To estimate
the accretion rate, one needs the flux F. This receives
contributions both from the velocity of the black hole,
and from the Fermi motion of the partons in the nuclei.
The latter produces a flux F� �, in units where c ¼ 1, and
thus a geometric rate law

dM

dt
¼ ��R2: (8.10)

The evolution equations are of the same form as Eq. (4.31),
with the replacements cs ¼ 1, 
D ¼ 1, and RB ! R. The
resulting time is analogous to Eq. (4.39), and evaluated at
R ¼ rN � 1 fm gives:

t ¼ d0
kD

�
MD

M0

�
D�2 D� 3

D� 5
ðrNM0ÞðD�5Þ; (8.11)

leading to time scales ranging from a fraction of a second
to at most a few weeks for 6 
 D 
 11.

When the black hole enters the regime R * rN , the
absorption becomes macroscopic—the black hole is ca-
pable of absorbing multiple nuclei, and its gravitational
range exceeds mean free paths. As Appendix B describes,

an Eddington limit would be even more problematic for a
neutron star, given its high density and opacity, and so
evolution is described as Bondi until the black hole reaches
a scale where it disrupts the star.
The corresponding growth laws are those given in

Sec. IV. In unwarped scenarios, we find for evolution from
RB ¼ rN to RD the growth time (4.43), and for evolution
from RC up to large scales the comparable time scale
(4.48), with 
D ! 
4. For the stage in between, we use,
as in the case of the white dwarfs, the conservative time in
Eq. (7.6). Taking a typical value � ¼ 2� 1014 gr=cm2

gives d0 ¼ 7� 10�3s, and the speed of sound is of mag-
nitude cs � 0:1. The time scales are therefore about 10�6

times smaller than those of the white dwarf. The longest
evolution corresponds to the 4-dimensional phase from RD

to RC in D ¼ 11 dimensions, with a time scale of 107 yr;
for D 
 7, times are & 50 yr.
In the more general warped case, the growth times are,

as in the white dwarf case, dominated by the upper end of
the warped phase and its crossover to four-dimensional
accretion, with time scale (7.13). For neutron-star parame-
ters and a value RC � 5 �A, this yields times of size tNS;w �
20 yr.
Combining the results of this and the preceding subsec-

tions, we find that the rate-limiting step to destroy a neu-
tron star is the time required for a black hole to be produced
and reach the surface of the neutron star. Once it reaches
the core, the accretion times are very rapid compared to the
neutron star’s lifetime,O (Gyr). These bounds appear quite
challenging to avoid. In order to do so, one would need a
significant deficit of light cosmic-ray primaries, together
with a heavy ( * 7 TeV) minimum black hole mass and
only systems with low FCE, and one would have to have a
neutrino flux that is either suppressed by unknown mecha-
nisms or is unusually nonreactive.
As a final note, in our framework we can estimate the

lifetime of a neutron star that captures a primordial black
hole of massOð1015 grÞ. Our parameters yield a time of or-
der 3� 105 yr. We note that such processes have been pro-
posed as the origin of some gamma-ray bursts [79], with
roughly comparable accretion times. The present analysis,
in addition to giving the analogous accretion time scales
for Earth and white dwarfs, lends further detail to such a
possibility through our description via Bondi accretion,
and through our arguments against an Eddington limit.

IX. SUMMARYAND CONCLUSIONS

In this paper we have studied accretion of hypothetical
stable TeV-scale black holes in two primary contexts: the
Earth, and compact stars—white dwarfs and neutron stars.
For Earth, we identified two main evolution domains:

that where the black hole’s gravitational range of influence
is less than the atomic scale, and that where it is greater. An
important distinction occurs depending on where the cross-
over radius RC to four-dimensional behavior lies relative to
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the atomic scale. In particular, if RC is in the subatomic
regime, evolution is four-dimensional at both subatomic
and macroscopic scales; this case includes unwarped sce-
narios with D � 8. In this case we have argued that this
evolution occurs on times longer than the expected natural
solar lifetime, in two different ways: via a microscopic
argument, and via a macroscopic, hydrodynamic argu-
ment. In both approaches, we used conservative assump-
tions, leading to the largest accretion rates and to fastest
evolution. At the end of the first phase, at times Oð1011Þ
years, the mass of the black hole is still small, with a mass
of less than a megaton. Such statements extend to more
general warped scenarios, and crossover scales up to

’ 200 �A lead to accretion times longer than the Earth’s
natural lifetime.

On the other hand, those cases where RC * 15 �A have
been treated by deriving bounds from white dwarfs, and
also from neutron stars. In particular, we have argued that
in such scenarios cosmic rays will produce black holes on
such astronomical objects, and that these objects will stop
even these very high-momentum black holes. We then
studied accretion, showing that accreting black holes will
disrupt such objects on time scales short as compared to
their observed lifetimes. In particular, we found a general
relationship (7.15) between accretion times for Earth
and for white dwarfs, which, when combined with white
dwarf ages exceeding 109 years, provides a very strong
constraint. Thus, the implication of these arguments is
that such scenarios, where Earth would be disrupted on
time scales short as compared to its natural lifetime, are
ruled out.

We summarize here the origin of our constraints, as a
function of dimensionality D and of black hole mass M.

D ¼ 5: The evolution scales on Earth for D ¼ 5 in the
case of maximum allowed crossover radius RC are quite
short. This is a result of the higher-dimensional force law
extending well into the macroscopic regime. On the other
hand, the greater interactivity of D ¼ 5 black holes makes
it possible for those produced by cosmic rays to get
promptly trapped in both white dwarfs and neutron stars. In
white dwarfs they are produced abundantly, with build-up
time scales of the order of few thousand years even assum-
ing a cosmic-ray composition of 100% Fe, and at the
largest Planck mass of interest. After being produced and
trapped, in these extreme scenarios they quickly accrete to
masses comparable to that of the star on time scales that
can be short when measured in years. This would make it
impossible for any white dwarf with a mass of the order of
1 solar masses to have survived longer than a few thousand
years, contrary to observations. Scenarios with increased
warping have correspondingly lower RC and longer accre-

tion times. In particular, once RC & 200 �A, accretion times
on Earth exceed its future lifespan.

D ¼ 6: The evolution times on Earth for D ¼ 6 are of
the order tens of thousand years, thus short on geological

time scales. Once again the main reason is the large extra-
dimensional radius, and the high capture rates. As in the
D ¼ 5 cases, such black holes produced by cosmic rays
can be stopped inside dense stars. The production rates
are even larger than in D ¼ 5, and the star accretion
time scales for unwarped D ¼ 6 are comparable to the
maximum-RC version of that scenario. With increased
warping, again RC decreases and accretion times increase.
D ¼ 7: The time scale for their macroscopic evolution

on Earth is in the range of 6–80� 109 years, depending on
the black hole mass. Furthermore, D ¼ 7 black holes
would be produced plentifully by cosmic rays on white
dwarfs, and be stopped inside their surface, if the white
dwarf mass is larger than 1.1 solar masses. The evolution
times would be longer than in D ¼ 5 and 6, reflecting the
lower growth rate that keeps them microscopic for 109 yr
inside the Earth. But within the very conservative estimate
of 8� 107 yr (for a M ¼ M� star, and shorter in the more
massive cases) their accretion process of the white dwarf
would be completed. Massive white dwarfs older than a
few hundred million years would therefore be ruled out in
these scenarios, once again contrary to observation. Again,
warping decreases RC, thus increasing accretion times.
D � 8: For these black holes the evolution time on Earth

is extremely long, with times of size 1011 yr. This is due to

the radius of the extra dimensions being smaller than 1 �A,
thus forcing most of the evolution to take place in 4
dimensions, where gravity is a totally negligi-
ble force. Warping only magnifies this effect. In spite of
this slow growth, these black holes would still grow fast
enough inside a neutron star to consume it within about
107 yr. The significant production rates on neutron stars
when D � 8, and the existence of billion-year old
x-ray binary systems, provide therefore additional evi-
dence that such black holes either do not exist, or decay
promptly.
We also note that these bounds likely extend in case

other objects are imagined that could result from high-
energy collisions in the relevant energy ranges, that have
weak-scale cross sections, and that could threaten the long-
term stability of matter.
We conclude by first summarizing the conditions needed

for our bounds to be necessary to rule out a possible risk. In
order for our bounds to have relevance, a sequence of un-
likely things would have to be true. First, TeV-scale grav-
ity, with a Planck scale no higher than a few TeV, would
have to be correct, so that black holes can be produced at
LHC. Most workers consider this to be a fascinating pos-
sibility, but also a somewhat unlikely possibility. Second,
black hole radiance, which has been deeply studied from
a number of theoretical perspectives, would have to be
wrong, and more general quantum-mechanical arguments
for black hole instability would have to be wrong. Most
workers consider this to be an exceedingly improbable,
if not impossible, scenario. Finally, one would need a
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mechanism to shut off the quantum effects responsible for
Hawking radiation, but still leave intact either the quan-
tum effects responsible for Schwinger discharge, or some
other neutralization mechanism that acts to discharge the
resulting stable black holes. It is very difficult to conceive
of a consistent physical framework that provides such a
mechanism.

In the event that all these conditions are satisfied, one
can turn to the considerations of this paper to assess the
possible impact on Earth. This paper has argued that in
order for such a scenario to have an impact on Earth at time
scales short as compared to the natural lifetime of the solar
system, in the 5:0� 109 yr range, the configuration of
extra dimensions would have to be such that gravity does
not transition to four-dimensional behavior until around
the 200 �A scale. This apparently requires additional fine-
tuning, reducing the likelihood even further. But beyond
that, this paper has argued that such scenarios are ruled out
by the longevity of known white dwarfs, on billion-year
time scales. In such a scenario, cosmic-ray-produced black
holes should have catalyzed white dwarf destruction on
significantly shorter time scales.

Moreover, decay of observed neutron stars would
also have been catalyzed, unless both of two unlikely
possibilities are realized, namely, that the composition
of ultrahigh-energy cosmic-ray primaries is dominantly
heavy elements, and ultrahigh-energy cosmic-ray neutri-
nos either are not produced, or have suppressed gravita-
tional interactions with partons. To summarize, the present
study argues for the following additional layers of safety,
beyond those that would have to fail to make this study
relevant:

(1) Only in scenarios such that the crossover scale to
four-dimensional gravity is larger than about 200 �A
does one have significant accretion at times short as
compared to the natural lifetime of Earth. This is a
priori unlikely, due to the additional fine-tuning
required to realize such a TeV-scale gravity
scenario.

(2) In these scenarios where black hole accretion time
on Earth is short as compared to natural time scales,
white dwarfs would likewise be accreted, on much
shorter time scales, in contradiction to observation.

(3) Unless cosmic rays have dominantly a very heavy
composition, and moreover either the expected neu-
trino flux does not exist or has unusual gravitational
couplings to hadronic matter, neutron-star decay
would likewise be catalyzed on time scales contra-
dicting observation.

In short, this study finds no basis for concerns that TeV-
scale black holes from the LHC could pose a risk to Earth
on time scales shorter than the Earth’s natural lifetime.
Indeed, conservative arguments based on detailed calcula-
tions and the best-available scientific knowledge, including
solid astronomical data, conclude, from multiple perspec-

tives, that there is no risk of any significance whatsoever
from such black holes.
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APPENDIX A: BONDI ACCRETION

Bondi accretion [33,59] describes the steady flow of
continuous matter into a black hole, assuming spherical
symmetry and hydrodynamical conditions. Its basic ingre-
dients are the continuity equation, guaranteeing a con-
served matter flow, energy conservation, which gives the
accretion velocity, and accretion boundary conditions at
the surface of the black hole, which provides the sink for
the continuous matter infall. As is well known, many fea-
tures of accretion depend on matter properties in the non-
relativistic region, far from the black hole horizon, and so
a nonrelativistic treatment is warranted. In particular,
one may describe the gravitational dynamics in terms of
a general potential �ðrÞ that becomes strong in the TeV
regime, as discussed in Sec. III B 4. Accretion from within
a neutron star approaches the relativistic regime; relativis-
tic corrections, which are typically small, are described, for
example, in [59].
The continuity equation is easily expressed as

dM

dt
¼ 4��ðrÞr2vðrÞ ¼ constant; (A.1)

where �ðrÞ and vðrÞ represent the matter medium density
and velocity, with positive vðrÞ corresponding to radial
flow towards the black hole at r ¼ 0. The Euler equation,
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v
dv

dr
þ 1

�

dp

dr
¼ �@r� (A.2)

describes energy conservation. The first term is clearly the
variation of kinetic energy for an element of the medium as
it moves. The second term represents the work done by the
pressure gradients. As matter falls towards the black hole,
its pressure will increase in response to increase in density.
This energy, as well as the kinetic energy, are drawn from
the gravitational potential of the black hole. Indeed, this
equation can be integrated to give the Bernoulli equation,

0 ¼ v2

2
�

Z 1

r

dp

�
þ�ðrÞ; (A.3)

where we neglect the kinetic and gravitational energy
densities far away from the black hole.

More highly compressible matter results in a higher
accretion rate. We parametrize matter properties via a
general polytropic equation of state, assuming adiabatic
evolution, as

p ¼ K��; (A.4)

where K and � are constants. The density change as a
function of a pressure variation is related to the sound
speed in the medium, according to

c2s ¼ dp

d�
¼ �p

�
: (A.5)

This equation of state also provides the value of the integral
in the Bernoulli equation:

Z 1

r

dp

�
¼ c2s

�� 1
j1r ; � � 1; (A.6)

Z 1

r

dp

�
¼ K ln½�ð1Þ

�ðrÞ �; � ¼ 1: (A.7)

Using these definitions, � can be eliminated by com-
bining the continuity equation and Euler’s equation, with
the result

1

2
@rv

2

�
1� c2s

v2

�
¼ �@r�þ 2c2s

r
: (A.8)

As one approaches the black hole, v increases until it
reaches the local sound speed cs; this equation gives a
relation defining the resulting sonic horizon, at r ¼ rs:

1

rs
¼ @r�ðrsÞ

2c2sðrsÞ
: (A.9)

For example, in the case where the potential transitions
from higher-dimensional form

�ðrÞ ¼ � kDM

2MD�2
D rD�3

; r < RD; (A.10)

to four-dimensional form

�ðrÞ ¼ �G4M

r
; r > RC; (A.11)

the sonic horizon is given by

rD�3
s ¼ D� 3

4

kDM

MD�2
D c2sðrsÞ

(A.12)

for rs < RD, and by

rs ¼ G4M

2c2sðrsÞ
(A.13)

for rs > RC.
The continuity equation (A.1) implies that the accretion

rate is determined by quantities at the sonic horizon as

dM

dt
¼ 4��ðrsÞr2scðrsÞ: (A.14)

This can then be computed by relating these quantities to
those at large distances.
For example, evaluation of Bernoulli’s Eq. (A.3) at r ¼

rs yields

c2sðrsÞ
�
1

2
þ 1

�� 1

�
þ�ðrsÞ ¼ c2sð1Þ

�� 1
: (A.15)

In a D-dimensional regime, the formula (A.12) for the
sonic radius then gives

cðrsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðD� 3Þ
Dþ 1� �ð7�DÞ

s
csð1Þ: (A.16)

From the equation of state relation c2s / ���1 we then find
the D-dimensional relation between asymptotic fluid pa-
rameters and those at the sonic horizon:

�ðrsÞ ¼ �ð1Þ
�

2ðD� 3Þ
Dþ 1� �ð7�DÞ

�
1=ð��1Þ

;

pðrsÞ ¼ pð1Þ
�

2ðD� 3Þ
Dþ 1� �ð7�DÞ

�
�=ð��1Þ

:

(A.17)

Also, define the Bondi radius for a given mass by the
equation

RBðMÞ ¼
�ðD� 3Þ
4c2sð1Þ

kDM

MD�2
D

�
1=ðD�3Þ

: (A.18)

Note that the sonic horizon radius and Bondi radius defined
in (A.18) also differ by an Oð1Þ proportionality constant.
Combining these quantities gives the Bondi accretion rate,

dM

dt
¼ �R2

BðMÞ�ð1Þcsð1Þ
D; (A.19)

where 
D is a D-dimensional constant,


D ¼ 4

�
2ðD� 3Þ

Dþ 1� �ð7�DÞ
�½Dþ1��ð7�DÞ�=½2ð��1ÞðD�3Þ�

:

(A.20)

In the range 1 
 � 
 5=3, numerical values fall between
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4 
 
4 < 18 for D ¼ 4, and 3< 
D < 6:6 when D ¼
5; . . . ; 11.

Proper understanding of the accretion process also
requires knowing the radial dependence of the physical
parameters. Equation (A.17) shows that their values at the
sonic horizon are close to their asymptotic values. Within
the sonic horizon, where the v becomes supersonic, the
relation v2 � 2� and the continuity equation give the
radial dependence of the density,

�ðrÞ ’ �ðrsÞ r
2
s

r2

ffiffiffiffiffiffiffiffiffiffiffiffi
�ðrsÞ
�ðrÞ

s
; (A.21)

from which other quantities follow via the equation of
state. In particular, note that in a D-dimensional non-
warped regime,

�ðrÞ ’ �ðrsÞ
�
rs
r

�ð7�DÞ=2
: (A.22)

From this we see that matter is compressed more strongly
at lower D, remains constant density in D ¼ 7, and is
rarified for D> 7. Also, from (3.24), note that in a warped
regime, the density scales as

�ðrÞ
�ðr0Þ

’
�
r0
r

�ð8�DÞ=2
ejDðr�r0Þ=2RD; (A.23)

which implies rarification in the region RD < r < RC.

APPENDIX B: EFFECTS OF
RADIATIVE TRANSPORT

Acceleration and compression during accretion can
cause the infalling medium to radiate. This raises the
possibility of new effects. For example, in the case of
accretion on Earth, such radiant energy could melt the
material surrounding the black hole, and thus has potential
to increase the accretion rate. (In our rate bounds for
accretion within Earth, we guarantee that we have ac-
counted for melting by treating the problem as accretion
from a fluid.) However, pressure from the outgoing radia-
tion also has the potential to decrease the accretion rate,
and, in particular, one should check for the possibility of an
Eddington-limited rate.

The actual process of radiation and its reabsorption is
somewhat complicated, but can be modeled based on
simple considerations. In the microscopic regime, one
expects radiation resulting from accelerations of infalling
particles. In the macroscopic regime, another reradiation
mechanism is heating of the material through its compres-
sion, resulting in thermal bremsstrahlung. In general, one
can parametrize the reradiation luminosity as

L ¼ �
dM

dt
; (B.1)

where �< 1 is the fraction of absorbed energy that is
reradiated.

1. Subatomic regime

In the subatomic context, where accretion is treated as
absorption of individual particles, such particles can in
general radiate some of their energy via bremsstrahlung
during absorption. The precise spectrum depends on details
of the capture process, but a characteristic scale is the hori-
zon radius. Thus, for horizon radii below 1 fm, one expects
nucleons to be broken up, and to emit gluon radiation that
hadronizes into pions. For radii above the Fermi scale, one
instead expects primarily emission of photons, with typical
energies approaching �1=R. We expect such radiation
effects to be small, due to small couplings of gauge boson
amplitudes in the vicinity of the black hole due to spatial
wave function/gray body factors.
In this limit where individual particles are absorbed one

at a time, one certainly does not expect an Eddington limit,
but can ask whether emitted energy is sufficient to melt
atomic matter. Note that if the accretion is driven by black
hole motion, then one naturally converts the luminosity
(B.1) into an energy deposition per unit length of travel,

dE

dl
¼ ���; (B.2)

with � the capture cross section of the black hole.
Photons have characteristic absorption lengths in the cm

range at sufficiently high energies. Let ‘a be the average
absorption length for the reradiated photons. In this case,
the energy density in the vicinity of the black hole’s track
has size

E ¼ ���

�‘2a
: (B.3)

This can be estimated in the region REM � 1 �A. In this
case, one has

E ¼ 10�16�
�

‘2aðcmÞ : (B.4)

For this value of REM, the Schwarzschild radius for D ¼
8–10 is in the range 10�11–10�12 cm, so a characteristic
energy is expected to be in the MeV range. In this range, ‘a
indeed is of order * 1 cm. For comparison, the latent heat
of fusion for materials such as iron, rock, etc. are of size

300 kJ

kg
¼ 3� 10�12: (B.5)

To reach a threshold where reradiation could contribute
significantly to melting, one should therefore wait until the
black hole grows to increase �=ð�‘2aÞ by a factor of at least
�104, beyond the atomic scale.
In addition to photons, as noted for sufficiently small R,

one can also have some fraction of the energy emitted as
strongly interacting particles (mostly pions). These have a
longer mean free path than photons, and should therefore
contribute even less to melting.
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2. Macroscopic accretion

When the Bondi radius exceeds the internuclear separa-
tion a in atomic matter, or rN in nuclear matter, accretion
transitions to that of a continuous medium.

In this context, for spherically symmetric accretion,
microscopic motion deviating from the overall radial mac-
roscopic flow is parametrized by the temperature of the
medium. As the medium is compressed, it heats up, and
can radiate through thermal bremsstrahlung; elementary
accounts of this mechanism appear in [38,59]. In particu-
lar, the resulting luminosity can be estimated as resulting
from free-free scattering. Let �ff be the correspond-

ing emissivity; for example, [59] gives the relativistic
form of this,

�ff � �3

m2
em

2
p

�2T; (B.6)

up to factors of order one. The total luminosity from a
range of r is then computed from the integral

Lff �
Z

�ff4�r
2dr (B.7)

over that region. If one integrates this quantity from sonic
horizon to event horizon in a four-dimensional accreting
medium, using the radial density dependence (A.21), and
the temperature dependence of a perfect fluid,

T / p

�
/ ���1; (B.8)

one finds [59] that the integral is dominated near the event
horizon,

Lff � 4�R2�ffðRÞmin½lðRÞ; R=3�; ðD ¼ 4Þ; (B.9)

where lðrÞ is the radius-dependent photon mean free path.
On the other hand, one can readily check that for a more
rapidly increasing potential, e.g. D � 5, and for � 
 5=3,
the integrated luminosity is dominated by the integrand at
the maximum value of r for the region.

The radiative transfer of the resulting radiation depends
on properties of the medium such as its opacity. Par-
ticularly relevant is the photon mean free path lðrÞ, as
compared to radius r—this determines whether radiation
thermalizes, or can instead escape to regions with weaker
gravitational potential. (In the regimes we consider, free-
free absorption is a typical opacity mechanism.) This ratio
is given by

lðrÞ
r

¼ 1

r�ðrÞ�ðrÞ ; (B.10)

where �ðrÞ is the opacity. Using Eq. (A.21) for the density,
we find that this parameter varies like

lðrÞ
r

’ 1

rs�ðrÞ�ðrsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�ðrÞ
r2s�ðrsÞ

s
(B.11)

in the supersonic region. For constant opacity, we thus find
different behaviors at decreasing r, depending on how the
potential grows. For four-dimensional growth, lðrÞ=r de-
creases as

ffiffiffi
r

p
, signifying that the medium becomes in-

creasingly optically thick. For D ¼ 5, this quantity stays
constant at decreasing r, and for faster growth of the
potential characteristic of D> 5 or warped regimes,
lðrÞ=r increases for decreasing r—the medium becomes
more transparent.
The size of the opacity is often approximately given by

the Thomson cross section, � � �T=m, where m is the
medium mass per electron ( � Amp=Z � 2mp for nonhy-

drogenic atomic matter). However, this can vary depending
on density and temperature. It also depends on the fre-
quency of the radiation, which will typically be given by
the local temperature of the medium.
Wewill first illustrate these considerations by describing

the case of white dwarfs, and then briefly summarize the
corresponding story for Earth and for neutron stars.

a. Radiative effects in white dwarfs

Let us first compare the relevant scales. The ambient
mean free path, estimated via the Thomson value for the
opacity, at � ¼ 107 gr=cm3, is approximately l0 � 5�
10�7 cm. More careful calculations of the opacity [80]
yield a value l0 ’ 5� 10�8 cm at the temperature 108K
characteristic of a young white dwarf, and values smaller
by about 1=100 for the temperature 107K characteristic of
the 1 Gyr age.
For the moment we restrict attention to the case RD *

l0. From the above values, we find that this covers most
situations with RD larger than the atomic scale, and spe-
cifically the cases we particularly would like to bound via
white dwarfs, those ofD 
 7 and the warped cases such as
D ¼ 5 with large radius.
This means that there are three regimes for the evolu-

tion: first as rs evolves from the internuclear separation
aWD � 10�10 cm to l0, then on to the scale RD � RC, then
the four-dimensional regime rs > RC. We consider them
in turn.
In the first regime, the medium is effectively transparent

and is governed by the higher-dimensional force law. For
constant opacity, the preceding arguments indicate that the
medium becomes more transparent closer to R. Initially,
since the temperature is nonrelativistic, the opacity evolves

via a Kramers law, � / �=T7=2, and thus drops slightly.
Then, at the relativistic temperature�6� 109 K, the free-
free emissivity (B.6) indicates � / �=T3, giving an essen-
tially constant value in the degenerate regime � ¼ 4=3.
Since the medium is degenerate, one also expects a cor-
rection factor due to Fermi blocking of the available energy
levels; this is included in the results of [80], and evolves as

�T=�1=3, thus also remaining essentially constant in the
degenerate regime.
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Accretion is determined by the balance of forces in the
vicinity of the sonic horizon. There will be a luminosity
pressure from the ambient luminosity of the gas,

p� � T4; (B.12)

in the downward direction towards r ¼ 0. Below rs, the
medium is being evacuated by the accretion and does not
have time to thermalize. It will produce a luminosity,
estimated, for example, by Lff as in the preceding discus-

sion. Since this is higher-dimensional accretion the integral
will be dominated at the upper end; however, the result will
not produce a value that competes with the downward
pressure, since the integral contributes less upward pres-
sure than would be present at the surface r ¼ rs in the
absence of a black hole. Moreover, even if this pressure
were competitive with the downward pressure, we can
estimate the importance of them both via (B.12). For the
early temperature T0 � 108 K� 9� 103 eV, and a typical
pressure, we find

T4
0

p0

� ð9� 103 eVÞ4
5� 10�3 MeV4

� 10�6: (B.13)

Thus these photon pressures cannot compete with the
pressure of the degenerate fluid.

The next regime is evolution from rs ¼ l0 up to RD. In
this regime, the medium is optically thick when crossing
the horizon, and thus approximately thermal. With falling
lðrÞ=r, it may become optically thin before reaching the
horizon. There, as above, wewould find the inward thermal
luminosity overcomes the outward luminosity from the
thin region at lower r. Any resulting radiation cannot reach
r ¼ rs. Moreover, even its effect at r < rs is small. For
example, the ratio of photon pressure to medium pressure
scales as

p�ðrÞ
pðrÞ ¼ p�ðr0Þ

pðr0Þ
�
�ðrÞ
�ðr0Þ

�
3��4

(B.14)

and thus remains relatively small. Furthermore, in the
regime r < rs, gravitational attraction dominates over the
medium pressure.

As rs passes RD, RC, one reaches the four-dimensional
regime. The medium is opaque at the sonic horizon, but, if
the true horizon lies below RC, it may or may not become
transparent below that depending on parameters. Once the
true horizon reaches RC, the fluid remains optically thick to
the horizon, and thus any outward photon flux thermalizes.
Again, by estimating p�=p down to the horizon, we see

that its effect is small even on the local fluid evolution
at r < rs.

As one final check, one can compare the mean outward
photon diffusion velocity to the inward flow velocity in the
four-dimensional accretion regime. This tells us whether
the photons are trapped. (For more discussion, see [81].)
We find the resulting trapping condition r2 < RR3

B=l
2
0. This

is satisfied for all r out to rs if RB * l0=cs. Thus even very

small four-dimensional black holes exhibit photon trap-
ping, preventing their escape to the region near the sonic
horizon.
From these considerations we conclude that there are

good reasons to rule out important radiation effects that
could produce an Eddington limit for accretion within a
white dwarf, although one cannot state for certain that
some form of dissipation would not play such a role.
However, we note that even in media that are less optically
thick, efforts to produce luminosity that reaches the
Eddington limit for spherical black hole accretion in as-
trophysical contexts have failed, as described in [38,59].
Radiation from spherical accretion onto a black hole seems
to be quite inefficient, even in optically thinner situations,
which we can find in accretion from Earth.18

b. Radiative effects in Earth

In the case of Earth, the mean free path is much longer;
for a rough estimate, using the Thomson cross section, and
a density �10 gr=cm characteristic of the interior of the
Earth, one finds a photon mean free path of size l0 �
0:5 cm. Thus, in cases relevant to Earth, we must explore
another regime, RC < l0. This changes the discussion as
follows.
First, the phase from rs ¼ a to rs ¼ RD is similar to the

first phase for white dwarf accretion: the medium begins in
the optically thin regime, and can get thinner as it nears the
horizon. Thus the upward luminosity pressure should not
be competitive with the downward pressure. Estimating
relative sizes of photon vs medium pressures for material
near the center of the Earth, we find

T4
0

p0

� ð:5 eVÞ4
2� 1010 eV4

� 4� 10�12: (B.15)

Thus, radiation pressure is negligible.
The next possible regime is from rs ¼ RC to rs ¼ l0,

and is new: it involves four-dimensional accretion from an
optically thin medium. In this case, the contribution to the
luminosity from the integral (B.7) is dominated by its
lower limit, as long as that is in the four-dimensional
regime. Thus, initially it will be dominated by r � RC.
However, as the black hole grows, the opacity at r ¼ RC

typically grows. Before R reaches RC, the optical thickness
�ðRCÞ from RC to rs, defined via

�ðrÞ ¼
Z rs

r

dr

lðrÞ ¼
Z rs

r
dr�ðrÞ�ðrÞ; (B.16)

reaches unity. Subsequently the radius rT defined by
�ðrTÞ ¼ 1 increases past RC. This means that the medium

18In certain low-collisionality contexts, magnetic fields can
change this situation; see e.g. [39]. However, one can check
that inside the low-magnetic field white dwarfs we consider, the
dynamics is collisional, with typical Larmor radii greatly ex-
ceeding mean free paths.
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is optically thick and thermalizes inside this radius. Thus,
the integral (B.7) should be cut off at the greater of RD, rT .
The net luminosity can be estimated as due to the contri-
bution of that integral, dominated by the resulting radius,
plus the luminosity of the thermal region inside rT ,

LT � 4�r2TT
4ðrTÞ: (B.17)

This case is similar to the case of accretion of an
optically thin gas onto a black hole, treated, for example,
in [38,59]. This situation, in which radiation can readily
propagate from regions of high compression and tempera-
ture, seems to have the highest prospect of producing an
Eddington limit among the scenarios we consider. How-
ever, while a significant amount of luminosity can be
generated, it appears difficult to attain an Eddington limit,
due to the cutoff on free-propagation of photons at the
radius rT . In particular, if one assumes an Eddington limit
with a small efficiency �, this implies that rT � R=�2.
This thus requires rT to be large, which in turn limits the
temperature at the last-scattering surface. This basic in-
consistency is related to those explained, for example, in
[38]. Thus, presence of an Eddington limit would require
satisfying a nontrivial set of consistency conditions, in
the absence of other dissipative mechanisms in the me-
dium. (One can incidentally check that there is not suffi-
cient infall time for neutronization to provide a cooling
mechanism.)

Finally, ultimately rs reaches l0. Above this value, the
accreting medium is optically thick at the sonic horizon,
and typically gets thicker as r decreases. If the true horizon
is still inside RD, there is a possibility that the medium
might become optically thin in a region before reaching R.
Whether or not this happens, the significant optical depth
in the regime just inside the sonic horizon apparently
precludes an Eddington limit.

c. Radiative effects in neutron stars

A rough estimate of the photon mean free path in the
neutron-star case, using the Thomson cross section, yields
l0 & 1 fm. Thus in all cases where we seek a bound
(namely, if RD * 1 �A), we are in a situation analogous to
that of the second and third regimes for a white dwarf, but
with an even higher opacity. Moreover, the range of r
between the sonic radius and the horizon is quite limited;
in general, we have

RB

R
&

1

c2s
; (B.18)

with a typical sound speed cs * 0:17. Thus we typically do
not expect the medium to ever become optically thin.
Finally, asymptotic interior temperatures are expected to
be in the range 104–105 eV, and pressures are in the range
of MeV=fm3. Thus, asymptotically, p�=p & 10�11, and

from (A.21) and (B.14) we find that the radiation pressure
remains negligible down to the horizon.
The relative unimportance of radiative pressure, and its

inability to stream outward, thus indicate that the neutron-
star evolution should also be governed by Bondi accretion,
without an Eddington limit.
We also note here that our arguments against an

Eddington limit in subsections B 2 a, B 2 b, and B 2 c,
and therefore for a Bondi description of accretion, likewise
apply to the case of primordial four-dimensional black
holes, which are expected to have masses * 1015 gr:

3. Eddington evolution

For completeness, we will give a rudimentary account of
accretion in the presence of an Eddington limit. We model
this effect as follows.19 The reradiation luminosity leads to
a flux of energy

S ¼ � _M

4�r2
(B.19)

through the spherical surface at radius r from the BH. As
described, the reradiation consists of light particles such as
photons, pions, etc. These outgoing particles scatter on the
accreting matter, producing an effective outward force. If
the scattering cross section on a given infalling particle of
mass m is �, the average force on this incident particle
takes the form

FL ¼ � _M�

4�r2
: (B.20)

For Earth, the incident matter is atoms. In the case of a
white dwarf or neutron-star interior, generally the incident
matter is a degenerate electron liquid or the n-p-e liquid of
neutron-star interiors. For horizon sizes above the scale
1 fm, the radiation is expected to be primarily photons, and
thus its force can be estimated using the Thomson cross
section for photon-electron scattering.
This reradiation force has the effect of modifying the

Euler equation (A.2) to

v
dv

dr
þ 1

�

dP

dr
¼ �@r�þ � _M�

4�mr2
: (B.21)

This yields a modified Bernoulli equation; for a
D-dimensional potential,

1

2
v2 þ 1

�� 1
c2s ¼

�
1

2

�
R

r

�
D�3 � � _M�

4�mr

�
þ 1

�� 1
c2sð1Þ:
(B.22)

This equation provides an important constraint on ac-
cretion flows. In particular, notice that its left-hand side is
positive semidefinite. Therefore, if the right-hand side

19For a textbook treatment of some aspects of the Eddington
limit, see [59].
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vanishes for some r, the density and velocity of the accret-
ing fluid must go to zero, effectively shutting off accretion.
There are two cases, depending on whether the Bondi
radius RB defined in Eq. (A.18) is greater or less than the
crossover radius to four dimensions, RC.

Notice that the two positive terms on the RHS of (B.22)
are of the same size when

r ¼
�
2ð�� 1Þ
D� 3

�
1=ðD�3Þ

RB; (B.23)

and consider first the case RB 	 RC. Then the gravita-
tional term dominates in the range RB * r > RC. The
condition that the negative Eddington term not negate the
four-dimensional gravitational force is then the usual
Eddington limit,

_M 
 4�mG

��
M: (B.24)

In the case RB < RC, the positive terms become of
comparable size in the higher-dimensional regime. If the
negative term is smaller than the other two terms at the
radius given by (B.23), then it will also clearly be sub-
dominant for both larger and smaller r. This yields the
relevant higher-dimensional Eddington limit,

_M 
 fð�; DÞ 8�mRB

��
c2sð1Þ; (B.25)

where for D � 5

fð�; DÞ ¼ 2

�
2

�� 1

�ðD�4Þ=ðD�3Þ� 1

D� 3

�
1=ðD�3Þ

(B.26)

is an Oð1Þ coefficient. In the case of D ¼ 4, (B.25) sub-
sumes (B.24) with fð�; 4Þ ¼ 1.

The Eddington limit becomes relevant when the Bondi
accretion rate (A.19) exceeds the Eddington rate (B.25).
This occurs for

RB * REdd ¼ 8mcsð1Þ

D���

; (B.27)

defining the Eddington radius REdd. Growth of the mass at
the four-dimensional Eddington limit (B.24) is exponen-
tial, with a time constant

tEdd ¼ �
�

4�mG
: (B.28)

We have given arguments about the difficulty of achiev-
ing such an Eddington limit in Earth, and even more so in
white dwarfs, at least until one reaches large black hole
sizes which disrupt the large-scale structure of the body in
question. Moreover, if such a mechanism were to become
operative in white dwarfs, then each black hole within the
dwarf would be emitting at the characteristic Eddington
luminosity LEdd ’ 8�mRBc

2
s=�. This would also be evi-

dent through interference with white dwarf cooling. Typi-
cal cooling rates are in the range 10�1–10�3 L�, where the
solar luminosity is L� ¼ 4� 1033 erg=s. As an example,

we find that the Eddington output of N black holes of
Bondi radii RB would exceed 10�2 L� for

NRB=cm * 60: (B.29)

Given the large numbers of black holes that would be
produced, on relatively short time scales one would find
a build-up of black holes that have a major impact on
cooling, even for a relatively large value like � ¼ :01.

APPENDIX C: GRAVITATIONAL SCATTERING OF
RELATIVISTIC PARTICLES IN A

SCHWARZSHILD FIELD

This appendix focuses on the dynamics of a test particle
in the background of a D-dimensional black hole. In the
classical context, we consider the trajectory of a test par-
ticle in motion with positive energy with respect to a
D-dimensional black hole. The goal is to establish the
features of the particle’s dynamics as a function of the ini-
tial energy and impact parameter, and to define the con-
ditions under which the test particle, in the encounter with
the black hole, is scattered or is absorbed. We shall be
interested in applying this discussion to the study of energy
loss, slow-down, and stopping of black holes produced by
cosmic rays. In this phase the black hole is still sufficiently
small that it only interacts, microscopically, with the par-
tons inside the nucleon. Since these are in relativistic
motion, we need to consider the case of relativistic test
particles. Two kinematical regimes are then potentially
relevant: the classical one, in which the de Broglie wave-
length of the test particle is small in comparison to the
black hole radius, and the quantum regime, where the black
hole itself is small compared to the probe’s wavelength. In
the context of black holes produced by cosmic rays, the
classical regime is relevant early on, when the Lorentz �
factor of the black hole is very large, and later on, when its
size has grown significantly. If we consider first the prob-
lem in the rest frame of the black hole, the momentum of
the infalling parton is of order �mp. At production, � >

M=mp (see Eq. (5.5)), and therefore the wavelength of the

projectile is indeed smaller than 1=M, and thus smaller
than the D-dimensional black hole radius, which is larger
than 1=M. As the black hole slows down, � drops, and we
enter the quantum regime, where we stay until the black
hole grows to a size of>1 fm. In the quantum case, we can
use the known total quantum scattering cross section.
Where we need the differential cross section as a function
of angle, outside the capture regime, we will use the
classical result; the two are known to agree for D ¼ 4
Rutherford scattering.

1. Classical trajectories and capture

The equation of the particle’s trajectory, in the rest frame
of a D-dim Schwarzschild potential, is given by
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’ ¼
Z L

r2

�
E2 �

�
m2 þ L2

r2

��
1�

�
R

r

�
n
���1=2

dr; (C.1)

where n ¼ D� 3, E is the projectile energy at infinity, and
L ¼ pb is the angular momentum at infinity (b being the
impact parameter). Setting E ¼ m�, p ¼ mv� and defin-

ing r̂ ¼ r=R and b̂ ¼ b=R gives

’ ¼
Z vb̂

r̂2

�
1�

�
1

�2
þ v2 b̂

2

r̂2

��
1� 1

r̂n

���1=2
dr̂: (C.2)

In the relativistic limit, � ! 1, this becomes

’ ¼
Z b̂

r̂2

�
1� b̂2

r̂2
þ b̂2

r̂nþ2

��1=2
dr̂: (C.3)

The orbit is thus entirely defined by the initial impact
parameter b̂. Scattering states only exist if the impact
parameter is large enough that the term in square brackets
admits a zero for r̂ > 0, defining the point of closest
approach, r̂min, of the trajectory. At this point,

b̂ 2 ¼ r̂2þn
min

r̂nmin � 1
; r̂ > 1: (C.4)

It is straightforward to prove that this relation admits a
real-valued solution for r̂min only if

b̂ > b̂min ¼ ð2þ nÞð2þnÞ=2nffiffiffi
n

p
21=n

: (C.5)

Thus bmin ¼ b̂minR represents the minimum impact pa-
rameter for scattering, below which the projectile falls
inside the event horizon. This therefore defines the clas-
sical capture radius20. Approximate values for D ¼
5; . . . ; 11 are given by b̂min ¼ ð2; 1:8; 1:6; 1:5; 1:5; 1:4; 1:4Þ.

2. Quantum capture

The absorbtion cross section of 4-dimensional spin-1=2
and spin-1 fields in the field of a D-dimensional black hole
has been calculated in [82–86], generalizing the D ¼ 4
results of [87–89]. Considering spin-1=2 fields, the largest
contribution is given by the s-wave states, resulting in
capture cross sections �c given by the following equation:

�c ¼ 2ð3D�13Þ=ðD�3Þ�R2: (C.6)

These can be thought of as determining the capture impact

parameter b̂min;q, like in the classical case, via the equation

�c ¼ �b̂2min;qR
2: (C.7)

The quantum capture radius b̂min;q grows from
ffiffiffi
2

p
for

D ¼ 5 to �2
ffiffiffi
2

p
for large D. The approximate values

in the range of interest are given by b̂min;q ¼

ð1:4; 1:8; 2:0; 2:1; 2:2; 2:3; 2:4Þ. Notice that, with the excep-
tion of D ¼ 5, these are slightly larger than the classical
capture radii given above.

3. Coulomb scattering

Outside the capture region, the projectile is deflected by

the gravitational field. In the large-b̂ approximation, the
approximate expression for the classical scattering angle
� � �� 2’ is given by

�app ¼ � 1

b̂n
ffiffiffiffi
�

p �½ðnþ 3Þ=2�
�½ðnþ 2Þ=2� � � 1

b̂n
�nþ2; (C.8)

which correctly reproduces the classical deflection of light
in D ¼ 4, � ¼ �2R=b. Notice that this approximate result
underestimates the exact deflection angle in the region
around b� bmin, as shown Fig. 3. Notice also in the figure
that, asD grows, large-angle scattering only takes place for
projectiles with impact parameter very close to the mini-
mum value bmin, as a result of the rapidly falling gravita-
tional field.
As discussed in the main text, for the momentum loss

due to elastic scattering we need the quantity

csc ¼ 1

�c

Z 1

cos�c

d cos�
d�

d cos�
2sin2

�

2
: (C.9)

Without an explicit formula for the quantum differential
cross section, we will estimate it using the classical ex-
pression (5.19), combined with the small-angle formula
(C.8). This yields the approximate value

csc � �2c
2ðD� 4Þ : (C.10)

FIG. 3. Comparison of exact (solid lines) and approximate
(dashed lines) relations between the scattering angle (which for
an attractive force is negative) and the normalized impact
parameter b̂ ¼ b=R, for D ¼ 5, 6, 7.

20For the D ¼ 4 case, we recover the usual results, bmin ¼
3

ffiffiffi
3

p
R=2, and rmin ¼ 3R, leading to a capture cross section of

27�R2=4.
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If �c � 1, we find the approximate values csc ¼
ð:5; :25; :17Þ for D ¼ 5–7.

APPENDIX D: NON-RELATIVISTIC
ACCRETION CHECKS

The discussion in Sec. VC assumes the validity of two
facts, which we establish here:

(1) the mass accreted per nucleon crossing should not
exceed the proton mass.

(2) the capture radius remains smaller than 1 fm
throughout this phase.

The first statement is stronger than the second one. If the
first is true, the second one is also true. Here is the proof:

The first statement requires the following:

�M ¼ ��n

rn
v
R2
c < mp; (D.1)

where Rc is the capture radius, Rc ¼ b̂minR. Writing

mp ¼ ð4�=3Þ�nr
3
n, we obtain Rc <

ffiffiffiffiffiffiffiffiffiffiffi
4v=3

p
rn & rn. Thus,

we just need to show that the accretion rate during a single
crossing does not saturate mp.

The maximal mass relevant to nonrelativistic stopping in
a white dwarf is the mass at the gravitational trapping
velocity, which is bounded by M<MNR=v, where we
recall from (5.24) that MNR <�iMi, and where v ’ :02.
Thus, our condition becomes

b̂minRð�iMi=vÞ< rn

ffiffiffiffiffiffi
4v

3

s
: (D.2)

Recall also that a typical boost for a large initial black hole,
M ¼ 14 TeV, is �i � 4:5� 104. For D � 6, this inequal-
ity can then easily be checked to hold for all v > :02 and
MD > 1 TeV. ForD ¼ 5, even for the extreme caseMD ¼
1 TeV, the condition holds for black holes well above
Mi ¼ 5MD (with corresponding reduction in initial boost),
down to the low end of the velocity range, v ’ :05 and of
course is easier to satisfy at larger MD.

APPENDIX E: BLACK HOLE
PRODUCTION RATES

1. Elementary cross sections

In the scenarios considered here, black holes are formed
in the collisions of partons with center-of-mass energiesffiffiffî
s

p 	 MD, and with impact parameters comparable to the

Schwarzschild radius R ¼ Rð ffiffiffî
s

p Þ [5,6,48,90]. The result-

ing cross section estimate, �� �Rð ffiffiffî
s

p Þ2, should be im-
proved to account for two effects. On one side, the fraction

y of partonic energy
ffiffiffî
s

p
that is absorbed by the black hole is

expected to be less than unity. The rest is radiated off [48–
51]. Furthermore, the maximum impact parameter b of the
partonic collision that can lead to a black hole formation
above the threshold mass Mmin for black holes to exist is

typically smaller than the radius Rð ffiffiffî
s

p Þ. Recent estimates

[8], based on [51], give inelasticity y of the order of 0.6–
0.7, depending on D, dying off beyond impact parameters

of about half the radius Rð ffiffiffî
s

p Þ. We implement these con-
straints by allowing black hole production only for partonic
collisions with impact parameter b < 0:5R, and consider-
ing inelasticities as small as 0.5.
For a given inelasticity y, the LHC would only be able to

make black holes at masses Mmin 
 yELHC. When one
calculates rates for cosmic rays to produce black holes,
those rates increase with y. Thus, for the purposes of
setting lower bounds on those rates, for a given Mmin, a
conservative choice is to take the inelasticity to be the
smallest value that would be compatible with LHC black
hole production,

y ¼ Mmin=ELHC: (E.1)

If indeed the inelasticity took this value, that would corre-
spond to zero production at LHC, due to lack of kinemati-
cal range. For example, if the actual inelasticity were
0.5, LHC would produce no black holes above 7 TeV.
For purposes of exploring the possible range of y, we
will where appropriate let y range from 0.5 up to unity.
A related issue is what is the minimum black hole mass

that can arise for a given value of the extra-dimensional
Plank mass MD. Several criteria are discussed in [5]; there
it was advocated that one particularly useful criterion is
that the entropy of the black hole be large, so that a thermal
approximation begins to make sense. A nonrotating hole of
mass M has entropy:

SBH ¼ RD�2�D�2

4GD

¼
�

2M

ðD� 2ÞMD

�ðD�2Þ=ðD�3Þ�ð2�Þð2D�7Þ

�D�2

�
1=ðD�3Þ

:

(E.2)

For example, for the representative cases of D ¼ 6 and
D ¼ 10, a black hole with mass M ¼ 5MD has entropy
SBH � 24, a plausible threshold to assume a semiclassical
behavior. Since for a fixed value ofM the black hole radius,
and thus the production cross sections, decrease with
increasing MD, to be conservative in our estimates of
production rates by cosmic rays we shall loosen this con-
straint, and allow for Mmin=MD to be as small as 3. In the
primary cases of interest for cosmic-ray bounds, D 
 7,
this lowest value corresponds to a Schwarzschild radius
that is less than twice the Planck radius, 1=MD.
The production cross sections at the LHC are then

obtained from the simple formula:

�BHðM>MminÞ ¼
X
ij

Z 1

�min

d�
Z 1

�

dx

x
fiðxÞfjð�=xÞ�̂ð

ffiffiffî
s

p Þ;

(E.3)

where ŝ ¼ x1x2s, and, as discussed above, �̂ð ffiffiffî
s

p Þ ¼
�R2ð ffiffiffî

s
p Þ=4, Mmin ¼ 3MD, and
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� ¼ x1x2 > �min ¼ M2
min=ðy2sÞ: (E.4)

x1;2 are the momentum fractions of the colliding nucleons

carried by the partons i and j, which are taken to span the
full set of quarks, antiquarks, and gluons. For the numeri-
cal evaluations throughout this work we shall use the
CTEQ6M set of parton distribution functions [54], calcu-
lated at the factorization scale Q ¼ 1=R [5].

The event rates at the LHC, integrated over the
1000 fb�1 luminosity expected to be collected during the
experiments lifetime, are given in Fig. 4. We show here
both the cases of y ¼ 1 and of y ¼ 0:5. We use y ¼ 1 only

to overcompensate for uncertainty in the precise value of
this parameter; the value y ¼ 1 is an extreme case, and
recent analyses [8] have argued for the more realistic value
y ¼ 0:6–0:7, or even a lower value[53].

2. Black hole production by cosmic rays

We present here the estimates of production rates and
properties of black holes produced by cosmic rays hitting
the surface of astronomical bodies. The rates presented in
this section refer to the exposure of the full area of the star
to cosmic rays coming from zenith angles between 0 and
90. Possible sources of reduction of acceptance must be
considered: the stellar magnetic fields, and the need for the
black hole to traverse a sufficient amount of material in
order to stop inside the star. These effects will be discussed
in appropriate parts of the main text.
We assume cosmic rays to be composed of nuclei with

atomic number A, and will consider the two extreme cases
of A ¼ 1 (protons) and A ¼ 56 (Fe). When A > 1, only a
fraction 1=A of the primary energy is available for the
nucleon entering the hard collision that will produce the
black hole, thus leading to a significant reduction in rate.
The kinematics of the production is therefore as follows:

AðEÞ þ NðmpÞ ! iðx1E=AÞ þ jðx2mpÞ
! BHðM2 ¼ 2y2x1x2mpE=AÞ; (E.5)

where E is the energy of the cosmic-ray primary; NðmpÞ is
a nucleon in the target, with rest energymp. For each value

of the primary energy E, the kinematics for the produc-
tion of a black hole with minimum mass Mmin is defined
by the constraints E> Emin � M2

min � A=ð2mpy
2Þ and

� ¼ x1x2 > �min � Emin=E. The resulting number of pro-

FIG. 4. Black hole production rates at the LHC, with inelas-
ticity y ¼ 1 (upper curves) and y ¼ 0:5 (lower curves), and for
D ¼ 8, 11.

FIG. 5. Black hole production rates by cosmic rays impinging on a 5400 km radius white dwarf. The rates correspond to the number
of events, in 1� 106 yr, in each energy bin. On the left we have a pure-proton cosmic-ray composition, on the right pure Fe. The two
curves correspond to minimum-mass values of 7 and 14 TeV. In all cases, MD ¼ Mmin=3 and y ¼ Mmin=14 TeV.
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duced black holes (per area, per time) is then expressed in
terms of the cosmic-ray flux d�=dE and by the total
nucleon-nucleon inelastic cross section, �NN ¼ 100 mb,
as follows:

NBHðM>MminÞ ¼ A
1

�NN

�
Z Emax

Emin

d�

dE
dE

X
ij

Z 1

�min

d�

�
Z 1

�

dx

x
fiðxÞfjð�=xÞ�̂ð

ffiffiffî
s

p Þ: (E.6)

We describe the cosmic-ray energy spectrum d�=dE
using the latest results by Auger [40], using the reported
values of the flux, and linearly interpolating in energy. We
allow Emax to extend only up to the largest value for which
data exist, namely Emax ¼ 2� 1020 eV.
We are interested in excluding the existence of stable

black holes with masses within the reach of the LHC. The
presence of an inelasticity y limits the mass reach to the
range M & y� 14 TeV. We allow y to take values in the
range (0.5, 1) in order to cover the full kinematic range up
to 14 TeV, and calculate the cosmic-ray rates correspond-
ing to the smallest possible inelasticity compatible with

TABLE IV. Black hole production rates, per million years, induced by proton cosmic rays
impinging on a R ¼ 5400 km white dwarf. MD ¼ Mmin=3 and y ¼ Mmin=14 TeV.

D ¼ 5 6 7

Mmin ¼ 7 TeV 2:1� 107 4:3� 107 6:7� 107

Mmin ¼ 8 TeV 1:4� 107 2:9� 107 4:7� 107

Mmin ¼ 10 TeV 6:7� 106 1:5� 107 2:6� 107

Mmin ¼ 12 TeV 3:7� 106 9:1� 106 1:6� 107

Mmin ¼ 14 TeV 2:3� 106 5:9� 106 1:0� 107

TABLE V. Black hole production rates, per million years, induced by Fe cosmic rays
impinging on a R ¼ 5400 km white dwarf. MD ¼ Mmin=3 and y ¼ Mmin=14 TeV.

D ¼ 5 6 7

Mmin ¼ 7 TeV 7:2� 104 1:6� 105 2:6� 105

Mmin ¼ 8 TeV 4:6� 104 1:1� 105 1:8� 105

Mmin ¼ 10 TeV 2:2� 104 5:5� 104 9:7� 104

Mmin ¼ 12 TeV 1:2� 104 3:2� 104 5:9� 104

Mmin ¼ 14 TeV 7:3� 103 2:1� 104 3:8� 104

TABLE VI. Black hole production rates, per million years, induced by cosmic rays impinging
on a R ¼ 5400 km white dwarf, with the cosmic-ray energies rescaled such that Eexp ¼ 1:2�
Etrue. y ¼ Mmin=14 TeV.

D ¼ 5 6 7

Np=Myr, Mmin ¼ 7 TeV 1:2� 107 2:5� 107 3:9� 107

NFe=Myr, Mmin ¼ 7 TeV 3:2� 104 7:0� 104 1:2� 105

Np=Myr, Mmin ¼ 14 TeV 1:3� 106 3:4� 106 6:0� 106

NFe=Myr, Mmin ¼ 14 TeV 3:2� 103 9:0� 103 1:7� 104

TABLE VII. Black hole production rates, per million years, induced by cosmic rays impinging
on a R ¼ 5400 km white dwarf. Np refers to the case of 100% proton composition, NFe refers to

100% Fe. MD ¼ Mmin=3 and inelasticity y ¼ 0:5.

D ¼ 5 6 7

Np=Myr, Mmin ¼ 7 TeV 2:1� 107 4:3� 107 6:7� 107

NFe=Myr, Mmin ¼ 7 TeV 7:2� 104 1:6� 105 2:6� 105

Np=Myr, Mmin ¼ 14 TeV 2:8� 105 5:7� 105 9:1� 105

NFe=Myr, Mmin ¼ 14 TeV 35 80 135
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production at a given mass value at the LHC, given by
(E.1), and with the largest possible value of MD, namely
MD ¼ Mmin=3. By so doing we obtain the lowest possible
cosmic-ray-induced rates for black holes of any given mass
that can be produced at the LHC.

As a reference, we shall consider the case of a white
dwarf, with radius of 5400 km. The production rates, as a
function of the energy of the primary cosmic ray, and
integrated over an exposure of the full star surface of
106 yr, are shown in Fig. 5. They are given for the
case where the production rate is the lowest, namely D ¼
5, and for the values of Mmin ¼ 7 TeV, corresponding to
inelasticity y ¼ 0:5, andMmin ¼ 14 TeV, with y ¼ 1. The

integrated rates for D ¼ 5–7 are shown in Table IV (for
a pure-proton composition) and in Table V (for a pure
Fe composition). The rates increase due to the increasing
black hole radius (for a given M, MD) with larger D.
As expected the rates for pure protons are much larger,

since in the case of Fe, to achieve sufficient energy for the
nucleon-nucleon collisions, one is forced to use cosmic
rays in the tail of the data distribution. Compositions inter-
mediate between protons and Fe will lead to distributions
contained within these two extremes. In particular, it is
straightforward to evaluate the production rates resulting
from some specified fraction of cosmic-ray protons, by
convoluting the rates we show in Fig. 5, bin-by-bin, with
the experimental determination of the proton fraction as a
function of energy. Current experimental data on the pene-
tration and development of the shower (see e.g. [70,71])
provide evidence for a mixed composition, at least in the
region where such data are statistically significant, namely,
below 4� 1019 eV. Data are inconsistent with being fully
protons, or fully Fe, and provide an estimate of hAi � 5
[41]. On the other hand, the uncertainty of these analyses is
such that one cannot separate the individual components
that contribute to the average of hAi. Phenomenological
descriptions or theoretical models of the highest-energy
cosmic-ray sources, fitted [68,69,91,92] using the latest
Auger spectra, as well as the Auger data [72,73] on the
correlation between the origin of cosmic rays around the
GZK cutoff and remote AGN, point to a significative
proton fraction, of the order of at least 10%, and higher
at super-GZK energies.
Proton fractions as low as only 10% lead to huge black

hole production rates, with sufficient accumulation inside a
white dwarf within a few years.
We point out that even assuming the most pessimistic

scenario in which 100% of the cosmic rays are made of Fe,
a scenario that is inconsistent with both data and with the

FIG. 6. Black hole production rates by cosmic rays impinging
on a 5400 km radius white dwarf in the extreme case of M>
14 TeV and with the inelasticity parameter y ¼ 0:5. The upper
curve corresponds to a pure-proton cosmic-ray composition, the
lower one to pure Fe.

FIG. 7. The Lorentz factors �, in units of 104, for black holes with M> 14 TeV produced by proton (left) and Fe (right) cosmic
rays. The lower curves represent the distributions relative to the events with 14<MðTeVÞ< 15.
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modeling of cosmic-ray sources, there would still be a
large number of black holes that can be accumulated on
the time scale of a few thousand years, very short com-
pared to the natural lifetime of a white dwarf. As a further
robustness check, we provide in Table VI the rates obtained
if one assumes a 20% systematic overestimate in the ex-
traction of the primary energy, to simulate the possible
impact of the Auger �20% energy resolution [55].

Finally, we note that the production rates are still sig-
nificant even if we set the inelasticity y ¼ 0:5 in the
calculation of the cosmic-ray rates for black holes of
14 TeV. Notice that with y ¼ 0:5 the black hole mass reach
at the LHC drops to zero at around M ¼ 7 TeV. The
number of produced black holes on our reference white
dwarf is given in Table VII, and the distribution as a
function of the cosmic-ray energy is shown in Fig. 6.

For the discussion of slow-down and stopping of the
black hole inside the white dwarf, we also present here
some relevant kinematical distributions. Figure 7 shows
the distributions of the Lorentz factor, � ¼ E=M, of the
produced black hole, in the case of proton (left) and of
Fe (right) primaries. We present in Table VIII the
rate-suppression factors due to requiring that the pro-
duced black hole has a Lorentz factor � < 3Mmin=mp,

and a mass M<Mmin þ 1 TeV, the criteria we used in
Sec. VC, to determine the stopping power of white dwarfs.
Notice that in all cases these efficiencies are large enough
to ensure abundant rates of produced black holes.

The production rates on a neutron star (neglecting
the magnetic screening) can be obtained from the white
dwarf’s ones by rescaling by the surface area. Assuming a
10 km radius, the proton rates in Table IVare reduced by a

factor of 3:4� 10�6, leading to the numbers in Table IX.
The distributions as a function of the cosmic-ray energy
have the same shape as those in the white dwarf cases,
Fig. 5. The results for D ¼ 5, 8 are summarized in Fig. 8,
where the corresponding rates for Fe cosmic rays are also
shown.
We conclude our discussion of production properties by

showing in Fig. 9 the x spectrum of the partons engaged in
the production of black holes with M> 14 TeV, for vari-

TABLE VIII. Efficiency factors �p (100% proton flux) and �Fe (100% Fe flux) for the production of black holes with M<Mmin þ
1 TeV and � < 3Mmin=mp.MD ¼ Mmin=3, and inelasticity y ¼ Mmin=14 TeV for all columns except the last one, which has y ¼ 0:5.

M (TeV) 7 8 10 12 14 14 (y ¼ 0:5)

�p 6:9� 10�2 8:3� 10�2 9:8� 10�2 0.10 0.10 4:4� 10�2

�Fe 0.28 0.32 0.35 0.34 0.32 0.47

TABLE IX. Black hole production rates, per million years, induced by proton cosmic rays impinging on a R ¼ 10 km neutron star.
MD ¼ Mmin=3 and y ¼ maxð0:5;Mmin=14 TeVÞ.
Mmin D ¼ 5 D ¼ 6 D ¼ 7 D ¼ 8 D ¼ 9 D ¼ 10 D ¼ 11

3 TeV 1:3� 104 2:5� 104 4:0� 104 5:6� 104 7:4� 104 9:2� 104 1:1� 105

4 TeV 2:2� 103 4:5� 103 7:0� 103 9:9� 103 1:3� 104 1:6� 104 1:9� 104

5 TeV 570 1100 1800 2500 3300 4100 5000

6 TeV 190 380 590 830 1100 140 1600

7 TeV 72 146 231 323 422 526 633

8 TeV 47 99 161 229 301 378 457

10 TeV 23 52 88 129 172 218 265

12 TeV 13 31 54 80 109 139 171

14 TeV 8 20 36 54 74 95 118

FIG. 8. Black hole production rates by cosmic rays impinging
on a 10 km radius neutron star, for the inelasticity parameter y ¼
maxð0:5;Mmin=14 TeVÞ and with MD ¼ Mmin=3. The upper
curves correspond to a pure-proton cosmic-ray composition,
the lower ones to pure Fe.
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ous cosmic-ray components and different inelasticity as-
sumptions. Notice that the bulk of the production is always
obtained for x & 0:6, namely, the region where the knowl-
edge of the PDFs is accurate to better than 10% [54].

3. Black hole production by cosmic neutrinos

High-energy neutrinos have a black hole production rate
much bigger than nuclear cosmic rays of the same energy
(see e.g. [7,93–98]). Two reasons justify this statement.
The first one is that all the energy carried by the neutrino
can be used for the production of the black hole (contrary
to protons or nuclei, where the partons carry a small frac-
tion of the primary energy). The second reason is that the
fraction of neutrino interactions that lead to black hole
production is much bigger than the similar fraction of
nuclear interactions: most collisions with a star atmosphere
result in generic strong-interaction processes, and the rate
of black hole production is proportional to the ratio of the
black hole cross section to the total inelastic cross section.
In the case of neutrinos, black hole production only com-
petes against the total electroweak cross section [99],
which turns out to be of the same size as the black hole
cross section, when neutrino energies exceed 1017 eV.

While no experimental evidence is as yet available for
the existence of such high-energy neutrinos, any modeling
of cosmic-ray production and evolution predicts their pres-
ence, with rates that are consistent with the current non-
observation. Neutrinos can be produced directly at the
source of the highest-energy cosmic rays, where they
emerge as decay products of the charged pions produced
during the acceleration of the primary charged cosmic rays
[100,101]. And they also would appear in the decay of
pions produced by the collision of protons with energy
above the GZK cutoff with the cosmic microwave back-
ground: �p ! �þ ! n�þ (the so-called cosmogenic neu-

trino flux [102–104]). The observation of cosmic rays
above the GZK cutoff, and the assumption that even only
a tiny fraction of these are protons, automatically leads to
the presence of neutrinos in the region above 1014 eV.
Several groups have extracted predictions for the cosmo-
genic neutrino flux, most recently [68,75,76]. The latter
based their analysis on the Auger study of the highest-
energy cosmic-ray composition [70], and considered a
broad range of single and mixed compositions, including
the extreme case of a Fe-only spectrum at injection, in
which case the spectrum of protons dissociated from the
Fe nuclei would be soft enough to strongly suppress pion
photoproduction, and thus the neutrino flux. For our cal-

FIG. 9. The normalized spectra of the partonic momentum fraction x, for proton (left) and Fe (right) cosmic rays, and for y ¼ 1 and
y ¼ 0:5. Mmin ¼ 14 TeV.

FIG. 10. Production rates for black holes of mass M>
14 TeV, created by cosmic neutrinos impinging on a 10 km
radius neutron star. The rates correspond to number of events, in
1� 106 yr, in each energy bin. D ¼ 5 and y ¼ 0:5.

STEVEN B. GIDDINGS AND MICHELANGELO L. MANGANO PHYSICAL REVIEW D 78, 035009 (2008)

035009-40



culations we use the following parametrization of the
neutrino flux:

d��ðE�Þ
dE�

¼ 10�7

�
GeV

E�

�
2
m�2s�1sr�1GeV�1: (E.7)

This provides a lower limit to the acceptable fits of the
worse-case, Fe-only, scenarios considered in [68], in the
region 1017 & E�ðeVÞ & 1019. We stress that this is a very
conservative assumption, and does not include the contri-
bution from neutrinos originating directly at the cosmic-
ray sources. A recent evaluation of this contribution from
AGN and GRBs [105], for example, leads to a flux between
10 and 100 times larger than (E.7), over and beyond
the range 1017 & E�ðeVÞ & 1020.21 We also notice that
the flux in (E.7) is over 3 orders of magnitude below the
Waxman-Bahcall upper bound [100,101].

The corresponding black hole production rate for a 10
km-radius neutron star is shown in Fig. 10, for D ¼ 5,
Mmin ¼ 14 TeV and y ¼ 0:5, as a function of the neutrino
energy. The rates as a function of D are given in Table X.
Accumulation over more than several hundred million
years of the life of a neutron star would lead to immense
rates, even if the cosmic neutrino flux turned out to be
suppressed by several orders of magnitude relative to our
most conservative assumption. The direct detection of
high-energy neutrinos in the next generation of neutrino
telescopes [107] will make it possible to strengthen these
estimates.

APPENDIX F: LHC PRODUCTION OF
GRAVITATIONALLY BOUND BLACK HOLES

In this appendix we estimate the number of LHC-
produced black holes that could in these hypothetical
scenarios become gravitationally trapped by the Earth.
This, in particular, addresses questions about whether there
could be multi-black hole effects. For a black hole to get
trapped, and start its accretion, its speed should not exceed
the escape velocity from Earth, namely vE � 11 km s�1 �
3:7� 10�5c. In the central LHC collisions, the black hole
acquires a speed along the beam axis because of an im-
balance in the longitudinal momenta of the colliding par-
tons, and a transverse speed because of the bremstrahlung
emitted from the initial state. These velocities are typically
much larger than vE. One should, however, also account

for the slow-down caused by the interactions with matter as
the black hole crosses the Earth. Such a slow-down will
increase the chances that a black hole will be captured in
the Earth’s gravitational field. In this appendix we study in
detail the velocity spectrum resulting at production, and
convolute it with the stopping power of the Earth, to obtain
an estimate of the trapping probability, as a function of the
black hole mass.
We start by analyzing the slow-down due to accre-

tion. As pointed out in the main text, the Earth’s den-
sity does not provide enough material to stop a highly
relativistic black hole, such as those produced by cos-
mic rays. Indeed, the Earth’s column density E ¼ 1:1�
1010 gr=cm2 � 2 GeV=TeV�2 leads, for v� 1, to the ac-
cretion of at most a few GeV. This number will, however,
increase significantly at low velocity, where the accretion
per unit length traveled goes like 1=v, as shown in
Eq. (5.28). Therefore some slow-down will typically arise
for nonrelativistic black holes produced at the LHC.
Repeating the analysis of the slow-down in the nonrelativ-
istic regime given in Sec. VC, we derive the following
relation for the maximum velocity at production, vmax, that
can be stopped before the black hole exits the Earth:

vmax ¼ 2�kDb̂
2
min

ðD� 3ÞM3
D

�
MD

kDM

�ðD�5Þ=ðD�3Þ
E: (F.1)

For a given mass, vmax is the largest in D ¼ 11. We give
some reference values for vmax in Table XI, using the
largest allowed value for MD corresponding to a given
mass, MD ¼ M=3. Notice that these velocities can be
significantly larger than the escape velocity. Black holes
pointing away from the center of the Earth will travel
across a smaller column density, and their velocity should
therefore be smaller than vmax‘=D, where ‘ is the length of
the path inside the Earth, and D is the Earth’s diameter.
This condition can be written as

v < vmax cos� ¼ vmax

vz

v
; (F.2)

where � is the angle with respect to the vertical axis ẑ. The
stopping condition becomes

TABLE X. Black hole production rates, per million years, induced by neutrino cosmic rays
impinging on a R ¼ 10 km neutron star. Mmin ¼ 14 TeV, MD ¼ Mmin=3, and y ¼ 0:5.

D ¼ 5 6 7 8 9 10 11

N ¼ 4:5� 103 1:1� 104 2:0� 104 3:0� 104 4:0� 104 5:1� 104 6:2� 104

TABLE XI. Maximum velocities at production for gravita-
tional trapping.

M(TeV) 4 6 8 10 12

vmax � 103, D ¼ 8 9.1 2.7 1.1 0.58 0.34

vmax � 103, D ¼ 11 15 4.5 1.9 0.96 0.56

21See also [106], where the decay of muons produced in the
interactions of �0 photons with the cosmic microwave back-
ground (CMB) photons leads to a flux of comparable size.
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v2 ¼ y2 þ v2
? < vmaxv? cos�; (F.3)

where y is the black hole rapidity (equal to its longitudi-
nal velocity in the nonrelativistic limit), v? its velocity in
the plane transverse to the beam direction, and � is the
angle between the velocity direction in the transverse plane
and ẑ.

For y � 1, d�=dy is approximately flat, and indepen-
dent of the black hole transverse momentum, since at small
velocity that longitudinal and transverse dynamics de-
couple. For a given value of v? < vmax,

y < y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vmaxv? cos�� v2

?
q

; (F.4)

and the fraction of events that satisfy the stopping condi-
tion is therefore given by

1

2�

Z �v

��v

d�
Z y0

�y0

1

�

d�

dy

��������y¼0
dy

¼ 2

��

d�

dy

��������y¼0
vmax

ffiffiffiffiffiffiffiffiffiffi
v?
vmax

s Z �v

0
d�

�
cos�� v?

vmax

�
1=2

;

(F.5)

where �v ¼ arccosðv?=vmaxÞ. To excellent approxima-
tion, this can be written as

2

��

d�

dy

��������y¼0
vmax

ffiffiffiffiffiffiffiffiffiffi
v?
vmax

s
1:2�

�
1� v?

vmax

�
: (F.6)

The normalized rapidity spectra of black holes at y ¼ 0, as
a function of M, is shown in Fig. 11.

Convolution of this probability with the v? spectrum
obtained, as a function of the black hole mass, from the
Herwig Monte Carlo[108], leads to the stopping probabil-
ities shown in Table XII. We then convolute these trapping

probabilities with the black hole production rates derived
assuming inelasticity in the realistic range from y ¼ 0:5 to
y ¼ 0:7 (we trust that the coincidence of notation here of y
for the rapidity and for the inelasticity will not be a source
of confusion). The results are shown in Fig. 12, for the
standard integrated luminosity of 1000 fb�1. As soon as
M * 7 TeV the expected number of trapped black holes
falls below 1 even with the looser inelasticity value of y ¼
0:7. We notice that mass values where the build-up of
multiple black holes could significantly exceed the value
one are firmly excluded for 8 
 D 
 11 by the neutron
stars, and for D 
 7 by the white dwarfs.
Some of the hypothesized black holes from LHC could

reach the Sun or the Moon. In the case of the Sun, its core is
the only part that has a significant stopping power. The
density in the core, whose radius is about Rcore � 0:2 R� �
1:4� 105 km, reaches 150 gr=cm3, giving a column den-
sity hundreds of times greater than the Earth, allowing to
stop black holes proportionally faster. On the other hand,
the geometric probability that an LHC-produced black hole
reaches the Sun’s core is only about 2:2� 10�7, a number
that by itself is much smaller than the probability of trap-
ping inside the Earth. The Moon has the same geometrical
suppression as the Sun, but a much higher suppression
due to the limited stopping power and the smaller escape
velocity. We also note that the parameter controlling
macroscopic accretion, d0cs, is for the Sun approximately

FIG. 11. Rapidity spectrum at y ¼ 0 for production at the
LHC.

TABLE XII. Stopping probabilities for typical M values.

M(TeV) 4 6 8 10 12

P� 104, D ¼ 8 5.7 1.2 0.37 0.20 0.24

P� 104, D ¼ 11 14 3.4 1.2 0.71 0.92

FIG. 12. Number of trapped black holes, for inelasticity y ¼
0:5 and y ¼ 0:7, as a function of the black hole mass M, and for
an integrated luminosity of 1000 fb�1.
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4 times its value on Earth (with � ¼ 150 gr=cm3 and cs ¼
500 km=s), implying accretion time scales that are 4 times
longer.

APPENDIX G: SYNCHROTRON LOSSES IN
MAGNETIC FIELDS

In this appendix we briefly summarize the limitations on
cosmic-ray penetration to stellar surfaces resulting from
synchrotron radiation losses.

We assume a dipole magnetic field, with polar intensity
Bp defined by

~Bð�; rÞ ¼ Bp

�
R0

r

�
3 3 cos�r̂� ẑ

2
; (G.1)

where R0 is the star radius, ẑ points along the field axis, and
� is the angle with respect to ẑ. We consider an incident
nucleus with charge Z and mass A, with radial momentum
p at an angle � from the direction of the magnetic axis. One
easily finds the Larmor radius as a function of r,

rLðr; �Þ ¼ 2p

ZeBp sin�

�
r

R0

�
3
: (G.2)

To ensure that the cosmic ray reaches the star’s surface, we
require that rLðr; �Þ> r for all values of the distance r.
If we consider the trajectories subject to the largest
field ( sin� ¼ 1), this corresponds to requiring: p >

ZeBpR0=2, or

p * 0:75� 1017 eV
R0

5000 km

ZBp

106 G

¼ 1:5� 1017 eV
R0

10 km

ZBp

109 G
: (G.3)

The two expressions correspond to typical radii of white
dwarfs and neutrons stars, and to reference magnetic fields
chosen to be in the range of actual measured values
[64,109]. For the energies we are dealing with, in the range
of 1018 eV or more, we see therefore that magnetic fields of
1 MG (WD) or 1000 MG (NS) correspond to relatively
small deflections (and even smaller at lower fields), which
are compatible with our criterion.

While typical magnetic fields do not seem to induce
sufficient deflection in the trajectory, they may never-
theless lead to great energy losses due to synchrotron
radiation emission. The synchrotron power loss for relativ-
istic cosmic rays corresponding to the above Larmor radius
is given by

dE

dt
¼ � 1

6

ðZeÞ4B2
psin

2�R6
0

A4m4
pr

6
E2: (G.4)

Integrating along a cosmic ray trajectory from r ¼ 1,
where E ¼ E1, to r ¼ R0, where E ¼ ER0

, gives

ER0
¼ Emax

E1
E1 þ Emax

; (G.5)

where

Emax ¼
30A4m4

p

ðZeÞ4ðsin�BpÞ2R0

: (G.6)

Notice that ER0
is always smaller than Emax, regardless of

the initial cosmic-ray energy. This is therefore a maximum
energy that can be retained by a cosmic ray impinging on
the star. For initial energies above Emax, the higher the
energy, the more is radiated off, ending up always with the
same limiting energy. Introducing numbers appropriate for
a neutron star, we get

Emax � 1:8� 1017 eV
A4

Z4

10 km

R0

�
108G

Bp sin�

�
2
: (G.7)

In a strong field, cosmic rays of the highest energies are
therefore allowed to penetrate only within an angle �ðEÞ
from the northern/southern hemispheres of the star, with

sin�ðEÞ< sin�max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1:8� 1017 eV

E

��
10 km

R0

�s

� A2

Z2

�
108 G

Bp

�
: (G.8)

Notice that the reduction factor is less harmful for nuclei,
since A=Z� 2. The lowest magnetic fields that have been
measured for neutron stars are of the order of 100 MG
[109], and this is therefore the lowest field that we can
assume for our study. In the case of proton cosmic rays,
penetration to the star’s surface with energies in the range
of 5� 1018 eV, as required for efficient production ofM>
14 TeV black holes (see Fig. 5), would require � & 0:2.
Combining the reduction in the star surface area that can be
reached (just the polar caps, of area��ð�maxR0Þ2) with the
limited angular acceptance (cosmics with � < �max from
the polar zenith), we obtain an approximate rate suppres-
sion of order �4max, and thus of order 10�3 for the case
considered. These numbers are too small to allow sufficient
rate for all cases, and specifically those at the highest black
hole masses.

APPENDIX H: PRODUCTION ON
BACKGROUND OBJECTS

Given the self-screening behavior resulting from
neutron-star magnetic fields, one is naturally led to con-
sider production of neutral black holes on background
objects, such as on a binary companion of the star, or on
the interstellar medium. We here outline some such
considerations.

1. On lifetimes and solid angles in x-ray binaries

Wewould like to understand the range of possible values
for the FCE, defined in (8.1), for neutron-star binary sys-
tems. A number of such systems have been well studied
and modeled. Thus, deviations from the FCEs given below
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would require substantial revision of our theoretical de-
scription of the formation and evolution of these systems.

Specifically, neutron stars are often found in binaries
tight enough for mass transfer to occur from the donor to
the NS. These x-ray binaries (see [110] for an overview)
are well studied systems, and are also known to exist in
other galaxies. The range of possible donor masses, Md, is
large[110], from Md ¼ 0:01 M� Helium white dwarfs in
ultracompact binaries to 30 M� stars around accreting
x-ray pulsars. The closest possible distance is when
the donor star fills its Roche lobe (e.g. the tidal ra-
dius), yielding the largest value for f ¼ ��=4� ¼
ð1� cos�Þ=2, where[111] tan� ¼ RRL=a ¼ 0:49½0:6þ
q�2=3 lnð1þ q1=3Þ��1 is only a function of the mass ratio
q ¼ Md=MNS. For Md ¼ 0:01� 10 M� (and a fixed NS
mass of MNS ¼ 1:4 M�), we find f ¼ 0:002� 0:06.

Massive x-ray binaries (see [112] for an overview) have
donor masses Md > 5 M� and range up to 50 M�. The
longest time that such a system can live as a mass-
transferring system (and thereby visible in x-rays) is
when the donor always underfills the Roche Lobe, and
the NS accretes some of the stellar wind leaving the com-
panion. Such a system lives for at most the hydro-
gen burning main sequence lifetime [113], TMS �
10 GyrðM�=MÞ2:5 of the massive star, which is<108 years
for Md > 5 M�. Such a star has f ¼ 0:05, yielding �
5 Myr of FCE. More massive main sequence compan-
ions would have slightly larger values of f, but their
much shorter main sequence lifetimes make them less
constraining.

Awell-known class is that of NSs accreting from aM �
M� red giant that result in millisecond radio pulsars orbit-
ing the remaining He WD core. While the Roche-lobe
filling mass transfer is occurring, f � 0:03, and the life-
time in this phase is set by the nuclear evolution rate of the
red giant. Those that start Roche-lobe filling at orbital
periods less than 10 days can have a mass transfer lifetime
of 109 yr [110], giving � 30 Myr of FCE.

The best examples are traditional low-mass x-ray bi-
naries (those with Md <M�) that have shorter 108–109

year lifetimes set by the mass transfer rates of _M �
10�8–10�9 M�yr�1. However, at very short orbital
periods, the donors become so low in mass, Md �
0:05 M�ðf ¼ 0:006Þ, as to be brown dwarfs (e.g.
SAX J1808:4� 3658 [114]) with mass transfer rates of
10�11 M�yr�1, consistent with that expected from gravi-
tational wave losses. These are certainly mass-transferring
for over a Gyr, giving 6 Myr of FCE

The lowest mass companions are in ultracompact bi-
naries where a Hewhite dwarf donates material to a NS at a
rate set by gravitational wave losses (see [115] for an
overview). The most constraining of these systems are
those at the longest orbital period of 40 minutes, where
T ¼ 109 yr and Md � 0:01 M�ðf ¼ 0:002Þ and � 2 Myr
of FCE.

In closing, the exposures of known systems are in the
range of 2–30 Myr of FCE, and one can be very confident
in those scenarios in the 2–6 Myr range [116]. Even the
NSs accreting from red giants that give 30 Myr are rela-
tively robust, and plausibly could be used in improving
bounds.

2. Production on the interstellar medium

We study here the possibility that black holes are pro-
duced by the collision of cosmic rays with the interstellar
medium (ISM). This is not meant to be a fully robust study,
but to provide an indication of further directions that could
be undertaken to produce additional constraints, largely
complementary to ours. We first estimate the column den-
sity that cosmic rays travel through as they reach a star. We
consider stars in the disk as embedded in a disk of ISM of
height h and radius L, where reasonable values are given
by h� 6� 102 light years, the disk width, and L� 60h.
The average ISM density nISM is about 1 proton=cm3. The
average column density for cosmic rays pointing toward
the star is given by nISMðh=2Þ logð2L=hÞ � 1:4� 10�4

protons/(100mb). This means an interaction probability
of about 1:4� 10�4 for each nucleon in the cosmic rays.
When the cosmic ray is pointing directly toward the star,
and when it produces a black hole, this will end up hitting
the star. The star’s magnetic field has no influence, and
therefore both neutron stars and white dwarfs of arbitrary
magnetic field can be considered as targets. The number of
black holes is obtained by applying this reduction factor to
the rates calculated for the production of black holes via
cosmic rays directly hitting a star. This suppression is too
large to give acceptable rates on neutron stars. In the case
of white dwarfs, and for D ¼ 5, Mmin ¼ 14 TeV, and y ¼
1, this means a rate of over 30/Myrs for a 10% proton
composition (see Table IV), and of about 1/Myrs for
100% Fe (see Table V). Even in the latter, most conserva-
tive, case, this means 100 black holes produced over
100 Myrs. Any white dwarf with mass in the range 1–1.2
solar masses, independently of the magnetic field, will
absorb and stop such black holes, which will then catalyze
its decay on time scales short as compared to observed
( * Gyr) lifetimes. A white dwarf like Sirius-B, for ex-
ample, with a mass of exactly one solar mass and an age of
about 120 Myrs [117], would not have escaped destruction
byD ¼ 5, 6 black holes up to minimummass 14 TeV, or by
D ¼ 7 black holes up to around 10 TeV (see Fig. 2).
Finally, we point out the possible use of massive weakly

interacting dark matter as a target for black hole production
by cosmic rays [118]. While lack of direct experimental
evidence for it makes it insufficient today for our purposes,
the expected densities [119] of about 0:3 GeV=cm3 could
provide sufficient to generate large numbers of black holes
to be absorbed by white dwarfs. The much lower � factor
due to production on such a heavy target would extend
the range of capture of even the highest mass black holes to
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lighter white dwarfs, and extend the stopping potential to
black holes significantly heavier than those accessible at
the LHC.

APPENDIX I: USEFUL CONVENTIONS,
CONVERSION FACTORS, AND
REFERENCE QUANTITIES

Conversion factors:

1 yr ¼ 3:2� 107s; (I.1)

1 gr ¼ 0:56� 1024 GeV ! 1 GeV ¼ 1:78� 10�24 gr

(I.2)

! 1 TeV ¼ 1:78� 10�21 gr; (I.3)

1 fm�1 ¼ 197 MeV ! 1 GeV ¼ 5:1� 1013 cm�1 (I.4)

! 1 TeV�1 ¼ 1:97� 10�17 cm; (I.5)

1K ¼ 8:6� 10�5 eV ¼ 4:5� 10�8 �A: (I.6)

Fundamental constants:

M4 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p ¼ 2:4� 1018 GeV ¼ 2:4� 1015 TeV

¼ 4:3� 10�6 gr; (I.7)

mp ¼ 1:84� 103me ¼ 9:4� 102 MeV: (I.8)

Astronomical quantities:

ME ¼ 6:0� 1027 gr ¼ 3:3� 1051 GeV; (I.9)

RE ¼ 6:4� 108 cm; (I.10)

�E ¼ 5:5 gr=cm3; (I.11)

hAEi ¼ 4� 101; (I.12)

vE ¼ 1:12� 106 cm=s ¼ 3:7� 10�5; (I.13)

MNS � 1:5 M� ¼ 3� 1033 gr ¼ 2� 1057 GeV; (I.14)

RNS � 10 km; (I.15)

�NS * 2� 1014 gr=cm3 � 0:1mp

fm3
� 10�3 GeV4: (I.16)

[1] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys.

Lett. B 429, 263 (1998) [arXiv:hep-ph/9803315].
[2] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and

G. R. Dvali, Phys. Lett. B 436, 257 (1998) [arXiv:

hep-ph/9804398].
[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370

(1999) [arXiv:hep-ph/9905221].
[4] S. B. Giddings, S. Kachru, and J. Polchinski, Phys. Rev. D

66, 106006 (2002) [arXiv:hep-th/0105097].
[5] S. B. Giddings and S. D. Thomas, Phys. Rev. D 65, 056010

(2002) [arXiv:hep-ph/0106219].
[6] S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett. 87,

161602 (2001) [arXiv:hep-ph/0106295].
[7] S. B. Giddings, in Proceedings of the APS/DPF/DPB

Summer Study on the Future of Particle Physics, Snow-

mass, 2001, edited by N. Graf (unpublished) [arXiv:

hep-ph/0110127].
[8] S. B. Giddings, AIP Conf. Proc. 957, 69 (2007) [arXiv:

0709.1107].
[9] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46,

206 (1976).
[10] W.G. Unruh and R. Schutzhold, Phys. Rev. D 71, 024028

(2005) [arXiv:gr-qc/0408009].
[11] G. A. Vilkovisky, Phys. Lett. B 638, 523 (2006) [arXiv:

hep-th/0511184].

[12] G. ’t Hooft, Int. J. Mod. Phys. A 11, 4623 (1996) [arXiv:

gr-qc/9607022].
[13] S.M. Christensen and S.A. Fulling, Phys. Rev. D 15, 2088

(1977).
[14] C. G. Callan, S. B. Giddings, J. A. Harvey, and A.

Strominger, Phys. Rev. D 45, R1005 (1992) [arXiv:

hep-th/9111056].
[15] S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95, 011303

(2005) [arXiv:gr-qc/0502074].
[16] T. Jacobson, arXiv:gr-qc/0308048.
[17] C. Barcelo, S. Liberati, and M. Visser, Living Rev. Rela-

tivity 8, 12 (2005) [arXiv:gr-qc/0505065].
[18] W. Unruh, in Proceedings of the workshop on Effec-

tive Models of Quantum Gravity, Perimeter Institute,

2007, http://www.perimeterinstitute.ca/Events/

Effective_Models_of_Quantum_Gravity/Abstracts/.
[19] S.W. Hawking, Phys. Rev. D 14, 2460 (1976).
[20] S. B. Giddings, arXiv:hep-th/9412138.
[21] A. Strominger, arXiv:hep-th/9501071.
[22] S. B. Giddings, arXiv:hep-th/9508151.
[23] W. Busza, R. L. Jaffe, J. Sandweiss, and F. Wilczek, Rev.

Mod. Phys. 72, 1125 (2000) [arXiv:hep-ph/9910333].
[24] J. P. Blaizot et al., Report No. CERN-2003-001, 2003

(unpublished).
[25] J. S. Schwinger, Phys. Rev. 82, 664 (1951).

ASTROPHYSICAL IMPLICATIONS OF HYPOTHETICAL ... PHYSICAL REVIEW D 78, 035009 (2008)

035009-45



[26] W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2006).

[27] D. E. Groom, N. V. Mokhov, and S. I. Striganov, At. Data
Nucl. Data Tables 76, No. 2 (2001).

[28] G. Giacomelli and L. Patrizii, arXiv:hep-ex/0506014.
[29] R. C. Myers and M. J. Perry, Ann. Phys. (N.Y.) 172, 304

(1986).
[30] R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837

(1993) [arXiv:hep-th/9301052].
[31] S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, Phys.

Rev. D 68, 046005 (2003) [arXiv:hep-th/0301240].
[32] S. B. Giddings, Phys. Rev. D 67, 126001 (2003) [arXiv:

hep-th/0203004].
[33] F. Hoyle and R.A. Lyttleton, Proc. Cambridge Philos. Soc.

35, 405 (1939); 36, 325 (1940); 36, 424 (1940); H. Bondi
and F. Hoyle, Mon. Not. R. Astron. Soc. 104, 273 (1944);
H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952).

[34] F. Birch, in Solids Under Pressure, edited by W. Paul and
D.M. Warschauer (McGraw-Hill, New York, 1963),
p. 137; Geophys. J. R. Astron. Soc. 4, 295 (1961).

[35] J.M. Brown and R.G. McQueen, J. Geophys. Res. 91,
7485 (1986).

[36] G. Fiquet et al., Science 291, 468 (2001).
[37] O. Aharony, S. Minwalla, and T. Wiseman, Classi-

cal Quantum Gravity 23, 2171 (2006) [arXiv:hep-th/
0507219].

[38] J. Frank, A. King, and D. Raine, Accretion Power in
Astrophysics, 3rd edition (Cambridge University Press,
Cambridge, England, 2002).

[39] P. Sharma, E. Quataert, and J.M. Stone, arXiv:0804.1353.
[40] T. Yamamoto (Pierre Auger Collaboration), arXiv:

0707.2638.
[41] G. Matthiae (Pierre Auger Collaboration), AIP Conf. Proc.

957, 107 (2007).
[42] R. Abbasi et al. (HiRes Collaboration), Phys. Rev. Lett.

100, 101101 (2008) [arXiv:astro-ph/0703099].
[43] K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
[44] G. T. Zatsepin and V.A. Kuzmin, Pis’ma Zh. Eksp. Teor.

Fiz. 4, 114 (1966) [JETP Lett. 4, 78 (1966)].
[45] A. Dar, A. De Rujula, and U.W. Heinz, Phys. Lett. B 470,

142 (1999) [arXiv:hep-ph/9910471].
[46] K. Shen, private communication; see http://mesa.source-

forge.net/micro_physics.html#eos for codes used.
[47] L. Bildsten and K. Shen, private communication.
[48] D.M. Eardley and S. B. Giddings, Phys. Rev. D 66,

044011 (2002) [arXiv:gr-qc/0201034].
[49] P. D. D’Eath and P. N. Payne, Phys. Rev. D 46, 694

(1992).
[50] H. Yoshino and Y. Nambu, Phys. Rev. D 67, 024009

(2003) [arXiv:gr-qc/0209003].
[51] H. Yoshino and V. S. Rychkov, Phys. Rev. D 71, 104028

(2005) [arXiv:hep-th/0503171].
[52] U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, and J. A.

Gonzalez, arXiv:0806.1738.
[53] P. Meade and L. Randall, J. High Energy Phys. 05 (2008)

003 [arXiv:0708.3017].
[54] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky,

and W.K. Tung, J. High Energy Phys. 07 (2002) 012
[arXiv:hep-ph/0201195].

[55] J. Ridky (Pierre Auger Collaboration), AIP Conf. Proc.
928, 39 (2007).

[56] K. Shen, private communication.
[57] S. O. Kepler and P. A. Bradley, Baltic Astronomy 4, 166

(1995).
[58] G. Fontaine, P. Brassard, and P. Bergeron, Publ. Astron.

Soc. Pac. 113, 409 (2001).
[59] S. L. Shapiro and S. A. Teukolsky, Black Holes, White

Dwarfs, and Neutron Stars (John Wiley & Sons, New
York, 1983).

[60] J. Liebert, P. Bergeron, and J. B. Holberg, Astrophys. J.
Suppl. Ser. 156, 47 (2005) [arXiv:astro-ph/0406657].

[61] L. G. Althaus, E. Garcia-Berro, J. Isern, A. H. Corsico, and
R.D. Rohrmann, Astron. Astrophys. 465, 249 (2007)
[arXiv:astro-ph/0702024].

[62] G. D. Schmidt and P. S. Smith, Astrophys. J. 448, 305
(1995).

[63] R. A. Cuadrado et al., Astron. Astrophys. 423, 1081
(2004).

[64] A. Kawka et al., Astrophys. J. 654, 499 (2007).
[65] M. Nalezyty and J. Madej, Astron. Astrophys. 420, 507

(2004).
[66] J. P. Subasavage, T. J. Henry, P. Bergeron, P. Dufour, and

N. C. Hambly, arXiv:0805.2515.
[67] T. Kashti and E. Waxman, J. Cosmol. Astropart. Phys. 05

(2008) 006 [arXiv:0801.4516].
[68] L. A. Anchordoqui, H. Goldberg, D. Hooper, S. Sarkar,

and A.M. Taylor, Phys. Rev. D 76, 123008 (2007) [arXiv:
0709.0734].

[69] D. Hooper, S. Sarkar, and A.M. Taylor, Phys. Rev. D 77,
103007 (2008) [arXiv:0802.1538].

[70] M. Unger (The Pierre Auger Collaboration), arXiv:
0706.1495.

[71] G. Hughes et al. (HiRes Collaboration), in Proceedings of
the 30th ICRC, Merida, 2007 (unpublished).

[72] J. Abraham et al. (Pierre Auger Collaboration), Astropart.
Phys. 29, 188 (2008) [arXiv:0712.2843].

[73] J. Abraham et al. (Pierre Auger Collaboration), Science
318, 938 (2007) [arXiv:0711.2256].

[74] D. S. Gorbunov, P. G. Tinyakov, I. I. Tkachev, and S. V.
Troitsky, arXiv:0804.1088.

[75] R. Engel, D. Seckel, and T. Stanev, Phys. Rev. D 64,
093010 (2001) [arXiv:astro-ph/0101216].

[76] Z. Fodor, S. D. Katz, A. Ringwald, and H. Tu,
J. Cosmol. Astropart. Phys. 11 (2003) 015 [arXiv:
hep-ph/0309171].

[77] J. Lykken, O. Mena, and S. Razzaque, J. Cosmol.
Astropart. Phys. 12 (2007) 015 [arXiv:0705.2029].

[78] D. Stojkovic and G.D. Starkman, Phys. Rev. Lett. 96,
041303 (2006) [arXiv:hep-ph/0505112].

[79] E. V. Derishev, V.V. Kocharovsky, and V.V. Kocharovsky,
Pis’ma Zh. Eksp. Teor. Fiz. 70, 642 (1999) [JETP Lett. 70,
652 (1999)].

[80] D. P. Kilcrease and N.H. Magee, J. Spectroscopy and
Radiative Transfer 71, 445 (2001).

[81] M. C. Begelman, Mon. Not. R. Astron. Soc. 184, 53
(1978).

[82] P. Kanti and J. March-Russell, Phys. Rev. D 67, 104019
(2003) [arXiv:hep-ph/0212199].

[83] P. Kanti and J. March-Russell, Phys. Rev. D 66, 024023
(2002) [arXiv:hep-ph/0203223].

[84] D. Ida, K. y. Oda, and S. C. Park, Phys. Rev. D 67, 064025
(2003); 69, 049901 (2004) [arXiv:hep-th/0212108].

STEVEN B. GIDDINGS AND MICHELANGELO L. MANGANO PHYSICAL REVIEW D 78, 035009 (2008)

035009-46



[85] D. Ida, K. y. Oda, and S. C. Park, Phys. Rev. D 73, 124022
(2006) [arXiv:hep-th/0602188].

[86] D. Ida, K. y. Oda, and S. C. Park, private communication.
[87] D. N. Page, Phys. Rev. D 13, 198 (1976).
[88] W.G. Unruh, Phys. Rev. D 14, 3251 (1976).
[89] N. G. Sanchez, Phys. Rev. D 18, 1030 (1978).
[90] T. Banks and W. Fischler, arXiv:hep-th/9906038.
[91] K. Arisaka, G. B. Gelmini, M. Healy, O. Kalashev, and J.

Lee, J. Cosmol. Astropart. Phys. 12 (2007) 002 [arXiv:
0709.3390].

[92] A. Dar and A. De Rujula, arXiv:hep-ph/0606199.
[93] J. L. Feng and A.D. Shapere, Phys. Rev. Lett. 88, 021303

(2001) [arXiv:hep-ph/0109106].
[94] L. A. Anchordoqui, J. L. Feng, H. Goldberg, and A.D.

Shapere, Phys. Rev. D 65, 124027 (2002) [arXiv:hep-ph/
0112247].

[95] M. Kowalski, A. Ringwald, and H. Tu, Phys. Lett. B 529, 1
(2002) [arXiv:hep-ph/0201139].

[96] A. Ringwald and H. Tu, Phys. Lett. B 525, 135 (2002)
[arXiv:hep-ph/0111042].

[97] C. Tyler, A.V. Olinto, and G. Sigl, Phys. Rev. D 63,
055001 (2001) [arXiv:hep-ph/0002257].

[98] S. I. Dutta, M.H. Reno, and I. Sarcevic, Phys. Rev. D 66,
033002 (2002) [arXiv:hep-ph/0204218].

[99] S. I. Dutta, M.H. Reno, and I. Sarcevic, Int. J. Mod. Phys.
A 18, 4085 (2003) [arXiv:hep-ph/0302178].

[100] E. Waxman and J. N. Bahcall, Phys. Rev. D 59, 023002
(1998) [arXiv:hep-ph/9807282].

[101] J. N. Bahcall and E. Waxman, Phys. Rev. D 64, 023002
(2001) [arXiv:hep-ph/9902383].

[102] V. S. Beresinsky and G. T. Zatsepin, Phys. Lett. B 28, 423
(1969).

[103] F.W. Stecker, Astrophys. J. 228, 919 (1979).

[104] C. T. Hill and D.N. Schramm, Phys. Lett. B 131, 247
(1983).

[105] L. A. Anchordoqui, D. Hooper, S. Sarkar, and A.M.
Taylor, Astropart. Phys. 29, 1 (2008) [arXiv:astro-ph/
0703001].

[106] Z. Li and E. Waxman, arXiv:0711.4969.
[107] F. Halzen and D. Hooper, Rep. Prog. Phys. 65, 1025

(2002) [arXiv:astro-ph/0204527].
[108] G. Corcella et al., J. High Energy Phys. 01 (2001) 010

[arXiv:hep-ph/0011363].
[109] D. R. Lorimer, Living Rev. Relativity 8, 7 (2005) [arXiv:

astro-ph/0511258].
[110] F. Verbunt and E. P. J. van den Heuvel, in X-Ray Binaries,

edited by W.H.G. Lewin, J. van Paradijs, and E. P. J. van
den Heuvel (Cambridge University Press, Cambridge,
United Kingdom, 1995).

[111] P. P. Eggleton, Astrophys. J. 268, 368 (1983).
[112] L. Bildsten et al., Astrophys. J. 113, 367 (1997) [arXiv:

astro-ph/9707125].
[113] C. J. Hansen and S.D. Kawaler, Stellar Interiors

(Springer, New York, 1994).
[114] L. Bildsten and D. Chakrabarty, Astrophys. J. 557, 292

(2001) [arxiv:astro-ph/0104153].
[115] C. J. Deloye and L. Bildsten, Astrophys. J. 598, 1217

(2003) [arXiv:astro-ph/0308233].
[116] L. Bildsten, private communication.
[117] J. Liebert, P. A. Young, D. Arnett, J. B. Holberg, and K.A.

Williams, Astrophys. J. 630, L69 (2005) [arXiv:astro-ph/
0507523].

[118] P. Draggiotis, M. Masip, and I. Mastromatteo, arXiv:
0805.1344.

[119] M. Kamionkowski and A. Kinkhabwala, Phys. Rev. D 57,
3256 (1998) [arXiv:hep-ph/9710337].

ASTROPHYSICAL IMPLICATIONS OF HYPOTHETICAL ... PHYSICAL REVIEW D 78, 035009 (2008)

035009-47


