1,083 research outputs found
Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence
Hydrodynamic, non-magnetic instabilities can provide turbulent stress in the
regions of protoplanetary discs, where the MRI can not develop. The induced
motions influence the grain growth, from which formation of planetesimals
begins. Thermal relaxation of the gas constrains origins of the identified
hydrodynamic sources of turbulence in discs.
We estimate the radiative relaxation timescale of temperature perturbations
and study the dependence of this timescale on the perturbation wavelength, the
location within the disc, the disc mass, and the dust-to-gas mass ratio. We
then apply thermal relaxation criteria to localise modes of the convective
overstability, the vertical shear instability, and the zombie vortex
instability.
Our calculations employed the latest tabulated dust and gas mean opacities
and we account for the collisional coupling to the emitting species.
The relaxation criterion defines the bulk of a typical T Tauri disc as
unstable to the development of linear hydrodynamic instabilities. The midplane
is unstable to the convective overstability from at most 2\mbox{ au} and up
to 40\mbox{ au}, as well as beyond 140\mbox{ au}. The vertical shear
instability can develop between 15\mbox{ au} and 180\mbox{ au}. The
successive generation of (zombie) vortices from a seeded noise can work within
the inner 0{.}8\mbox{ au}.
Dynamic disc modelling with the evolution of dust and gas opacities is
required to clearly localise the hydrodynamic turbulence, and especially its
non-linear phase.Comment: 13 pages, 8 figure
Transient growth and coupling of vortex and wave modes in self-gravitating gaseous discs
Flow nonnormality induced linear transient phenomena in thin self-gravitating
astrophysical discs are studied in the shearing sheet approximation. The
considered system includes two modes of perturbations: vortex and (spiral
density) wave. It is shown that self-gravity considerably alters the vortex
mode dynamics -- its transient (swing) growth may be several orders of
magnitude stronger than in the non-self-gravitating case and 2-3 times larger
than the transient growth of the wave mode. Based on this finding, we comment
on the role of vortex mode perturbations in a gravitoturbulent state. Also
described is the linear coupling of the perturbation modes, caused by the
differential character of disc rotation. The coupling is asymmetric -- vortex
mode perturbations are able to excite wave mode ones, but not vice versa. This
asymmetric coupling lends additional significance to the vortex mode as a
participant in spiral density waves and shocks manifestations in astrophysical
discs.Comment: 10 pages, 8 figure
Dust Distribution in Gas Disks. A Model for the Ring Around HR 4796A
There have been several model analyses of the near and mid IR flux from the
circumstellar ring around HR4796A. In the vicinity of a young star, the
possibility that the dust ring is embedded within a residual protostellar gas
disk cannot be ruled out. In a gas-rich environment, larger sizes () are needed for the particles to survive the radiative blow out. The total
dust mass required to account for the IR flux is . The
combined influence of gas and stellar radiation may also account for the
observed sharp inner boundary and rapidly fading outer boundary of the ring.
The pressure gradient induced by a small (10%) amplitude variation in the
surface density distribution of a low-mass gaseous disk would be sufficient to
modify the rotation speed of the gas.Comment: proof read version, 26 pages, LaTex, 11 figures. To appear in The
Astronomical Journal June 200
Linear coupling of modes in 2D radially stratified astrophysical discs
We investigate mode coupling in a two dimensional compressible disc with
radial stratification and differential rotation. We employ the global radial
scaling of linear perturbations and study the linear modes in the local
shearing sheet approximation. We employ a three-mode formalism and study the
vorticity (W), entropy (S) and compressional (P) modes and their coupling
properties. The system exhibits asymmetric three-mode coupling: these include
mutual coupling of S and P-modes, S and W-modes, and asymmetric coupling
between the W and P-modes. P-mode perturbations are able to generate potential
vorticity through indirect three-mode coupling. This process indicates that
compressional perturbations can lead to the development of vortical structures
and influence the dynamics of radially stratified hydrodynamic accretion and
protoplanetary discs.Comment: 10 pages, 10 figures, MNRAS (accepted
Using a cognitive architecture to examine what develops
Different theories of development propose alternative mechanisms by which development occurs. Cognitive architectures can be used to examine the influence of each proposed mechanism of development while keeping all other mechanisms constant. An ACT-R computational model that matched adult behavior in solving a 21-block pyramid puzzle was created. The model was modified in three ways that corresponded to mechanisms of development proposed by developmental theories. The results showed that all the modifications (two of capacity and one of strategy choice) could approximate the behavior of 7-year-old children on the task. The strategy-choice modification provided the closest match on the two central measures of task behavior (time taken per layer, r = .99, and construction attempts per layer, r = .73). Modifying cognitive architectures is a fruitful way to compare and test potential developmental mechanisms, and can therefore help in specifying “what develops.
The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning
Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy
A natural formation scenario for misaligned and short-period eccentric extrasolar planets
Recent discoveries of strongly misaligned transiting exoplanets pose a
challenge to the established planet formation theory which assumes planetary
systems to form and evolve in isolation. However, the fact that the majority of
stars actually do form in star clusters raises the question how isolated
forming planetary systems really are. Besides radiative and tidal forces the
presence of dense gas aggregates in star-forming regions are potential sources
for perturbations to protoplanetary discs or systems. Here we show that
subsequent capture of gas from large extended accretion envelopes onto a
passing star with a typical circumstellar disc can tilt the disc plane to
retrograde orientation, naturally explaining the formation of strongly inclined
planetary systems. Furthermore, the inner disc regions may become denser, and
thus more prone to speedy coagulation and planet formation. Pre-existing
planetary systems are compressed by gas inflows leading to a natural occurrence
of close-in misaligned hot Jupiters and short-period eccentric planets. The
likelihood of such events mainly depends on the gas content of the cluster and
is thus expected to be highest in the youngest star clusters.Comment: 7 pages, 4 figures. Accepted for publication in MNRAS. Updated to
match published versio
An hydrodynamic shear instability in stratified disks
We discuss the possibility that astrophysical accretion disks are dynamically
unstable to non-axisymmetric disturbances with characteristic scales much
smaller than the vertical scale height. The instability is studied using three
methods: one based on the energy integral, which allows the determination of a
sufficient condition of stability, one using a WKB approach, which allows the
determination of the necessary and sufficient condition for instability and a
last one by numerical solution. This linear instability occurs in any inviscid
stably stratified differential rotating fluid for rigid, stress-free or
periodic boundary conditions, provided the angular velocity decreases
outwards with radius . At not too small stratification, its growth rate is a
fraction of . The influence of viscous dissipation and thermal
diffusivity on the instability is studied numerically, with emphasis on the
case when (Keplerian case). Strong
stratification and large diffusivity are found to have a stabilizing effect.
The corresponding critical stratification and Reynolds number for the onset of
the instability in a typical disk are derived. We propose that the spontaneous
generation of these linear modes is the source of turbulence in disks,
especially in weakly ionized disks.Comment: 19 pages, 13 figures, to appear in A&
Studies on the clinical significance of nonesterified and total cholesterol in urine
Gas-liquid chromatographic determinations of nonesterified and total urinary cholesterol were performed in 137 normals, 264 patients with various internal diseases without evidence of neoplasias or diseases of the kidney or urinary tract, 497 patients with malignancies and 236 patients with diseases of the kidney, urinary tract infections or prostatic adenoma with residual urine. A normal range (mean±2 SD) of 0.2–2.2 mg/24 hours nonesterified cholesterol (NEC) and of 0.3–3.0 mg/24 hours total cholesterol (TC) was calculated.
Values of urinary cholesterol excretion were independent of age and sex and did not correlate with cholesterol levels in plasma. Patients with various internal diseases, without evidence of neoplasias nor diseases of the kidney or obstruction of the urinary tract, showed normal urinary cholesterol excretions, as did patients with infections of the urinary tract.
However, elevated urinary cholesterol was found in patients with diseases of the kidney or urinary tract obstruction (prostatic adenoma with residual urine), malignant diseases of the urogenital tract and metastasing carcinoma of the breast. In patients with other malignant diseases urinary cholesterol was usually normal.
Lesions of the urothelial cell membranes are considered to be the most likely cause of urinary cholesterol hyperexcretion. The clinical value of urinary cholesterol determinations as a possible screening test for urogenital carcinomas in unselected populations is limited by lacking specificity, expensive methodology and low prevalence of the mentioned carcinomas, although elevated urinary cholesterol excretions have been observed in early clinical stages of urogenital cancers
The Orbit and Occultations of KH 15D
The unusual flux variations of the pre-main-sequence binary star KH 15D have
been attributed to occultations by a circumbinary disk. We test whether or not
this theory is compatible with newly available data, including recent radial
velocity measurements, CCD photometry over the past decade, and photographic
photometry over the past 50 years. We find the model to be successful, after
two refinements: a more realistic motion of the occulting feature, and a halo
around each star that probably represents scattering by the disk. The occulting
feature is exceptionally sharp-edged, raising the possibility that the dust in
the disk has settled into a thin layer, and providing a tool for fine-scale
mapping of the immediate environment of a T Tauri star. However, the window of
opportunity is closing, as the currently visible star may be hidden at all
orbital phases by as early as 2008.Comment: To appear in ApJ [16 pages, 13 figures
- …
