590 research outputs found
Associations between fruit and vegetable intake, leisure-time physical activity, sitting time and self-rated health among older adults : cross-sectional data from the WELL study
BackgroundLifestyle behaviours, such as healthy diet, physical activity and sedentary behaviour, are key elements of healthy ageing and important modifiable risk factors in the prevention of chronic diseases. Little is known about the relationship between these behaviours in older adults. The purpose of this study was to explore the relationship between fruit and vegetable (F&V) intake, leisure-time physical activity (LTPA) and sitting time (ST), and their association with self-rated health in older adults.MethodsThis cross-sectional study comprised 3,644 older adults (48% men) aged 55-65 years, who participated in the Wellbeing, Eating and Exercise for a Long Life ("WELL") study. Respondents completed a postal survey about their health and their eating and physical activity behaviours in 2010 (38% response rate). Spearman\u27s coefficient (rho) was used to evaluate the relationship between F&V intake, LTPA and ST. Their individual and shared associations with self-rated health were examined using ordinal logistic regression models, stratified by sex and adjusted for confounders (BMI, smoking, long-term illness and socio-demographic characteristics).ResultsThe correlations between F&V intake, LTPA and ST were low. F&V intake and LTPA were positively associated with self-rated health. Each additional serving of F&V or MET-hour of LTPA were associated with approximately 10% higher likelihood of reporting health as good or better among women and men. The association between ST and self-rated health was not significant in the multivariate analysis. A significant interaction was found (ST*F&V intake). The effect of F&V intake on self-rated health increased with increasing ST in women, whereas the effect decreased with increasing ST in men.ConclusionThis study contributes to the scarce literature related to lifestyle behaviours and their association with health indicators among older adults. The findings suggest that a modest increase in F&V intake, or LTPA could have a marked effect on the health of older adults. Further research is needed to fully understand the correlates and determinants of lifestyle behaviours, particularly sitting time, in this age group
Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks
International audienceIncreasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system
Aging Skin: Nourishing from Out-In. Lessons from Wound Healing
Skin lesion therapy, peculiarly in the elderly, cannot be isolated from understanding that the skin is an important organ consisting of different tissues. Furthermore, dermis health is fundamental for epidermis
integrity, and so adequate nourishment is mandatory in maintaining skin integrity. The dermis nourishes the epidermis, and a healthy epidermis protects the dermis from the environment, so nourishing the dermis
through the epidermal barrier is a technical problem yet to be resolved. This is also a consequence of the laws and regulations restricting cosmetics, which cannot have properties that pass the epidermal layer.
There is higher investment in cosmetics than in the pharmaceutical industry dealing with skin therapies, because the costs of drug registration are enormous and the field is unprofitable. Still, wound healing may
be seen as an opportunity to “feed” the dermis directly. It could also verify whether providing substrates could promote efficient healing and test optimal skin integrity maintenance, if not skin rejuvenation, in an
ever aging population
Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes
Identification of optimal genetic manipulation strategies for redirecting substrate uptake towards a desired product is a challenging task owing to the complexity of metabolic networks, esp. in terms of large number of routes leading to the desired product. Algorithms that can exploit the whole range of optimal and suboptimal routes for product formation while respecting the biological objective of the cell are therefore much needed. Towards addressing this need, we here introduce the notion of structural flux, which is derived from the enumeration of all pathways in the metabolic network in question and accounts for the contribution towards a given biological objective function. We show that the theoretically estimated structural fluxes are good predictors of experimentally measured intra-cellular fluxes in two model organisms, namely, Escherichia coli and Saccharomyces cerevisiae. For a small number of fluxes for which the predictions were poor, the corresponding enzyme-coding transcripts were also found to be distinctly regulated, showing the ability of structural fluxes in capturing the underlying regulatory principles. Exploiting the observed correspondence between in vivo fluxes and structural fluxes, we propose an in silico metabolic engineering approach, iStruF, which enables the identification of gene deletion strategies that couple the cellular biological objective with the product flux while considering optimal as well as sub-optimal routes and their efficiency.This work was supported by the Portuguese Science Foundation [grant numbers MIT-Pt/BS-BB/0082/2008, SFRH/BPD/44180/2008 to ZS] (http://www.fct.pt/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Tobacco use patterns, knowledge, attitudes towards tobacco and availability of tobacco control training among school personnel from a rural area in Poland
EQ-5D in Central and Eastern Europe : 2000-2015
Objective: Cost per quality-adjusted life year data are required for reimbursement decisions in many Central and Eastern European (CEE) countries. EQ-5D is by far the most commonly used instrument to generate utility values in CEE. This study aims to systematically review the literature on EQ-5D from eight CEE countries. Methods: An electronic database search was performed up to July 1, 2015 to identify original EQ-5D studies from the countries of interest. We analysed the use of EQ-5D with respect to clinical areas, methodological rigor, population norms and value sets. Results: We identified 143 studies providing 152 country-specific results with a total sample size of 81,619: Austria (n=11), Bulgaria (n=6), Czech Republic (n=18), Hungary (n=47), Poland (n=51), Romania (n=2), Slovakia (n=3) and Slovenia (n=14). Cardiovascular (20%), neurologic (16%), musculoskeletal (15%) and endocrine/nutritional/metabolic diseases (14%) were the most frequently studied clinical areas. Overall 112 (78%) of the studies reported EQ VAS results and 86 (60%) EQ-5D index scores, of which 27 (31%) did not specify the applied tariff. Hungary, Poland and Slovenia have population norms. Poland and Slovenia also have a national value set. Conclusions: Increasing use of EQ-5D is observed throughout CEE. The spread of health technology assessment activities in countries seems to be reflected in the number of EQ-5D studies. However, improvement in informed use and methodological quality of reporting is needed. In jurisdictions where no national value set is available, in order to ensure comparability we recommend to apply the most frequently used UK tariff. Regional collaboration between CEE countries should be strengthened
Stoichiometric representation of geneproteinreaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction
Genome-scale metabolic reconstructions are currently available for hundreds of organisms. Constraint-based modeling enables the analysis of the phenotypic landscape of these organisms, predicting the response to genetic and environmental perturbations. However, since constraint-based models can only describe the metabolic phenotype at the reaction level, understanding the mechanistic link between genotype and phenotype is still hampered by the complexity of gene-protein-reaction associations. We implement a model transformation that enables constraint-based methods to be applied at the gene level by explicitly accounting for the individual fluxes of enzymes (and subunits) encoded by each gene. We show how this can be applied to different kinds of constraint-based analysis: flux distribution prediction, gene essentiality analysis, random flux sampling, elementary mode analysis, transcriptomics data integration, and rational strain design. In each case we demonstrate how this approach can lead to improved phenotype predictions and a deeper understanding of the genotype-to-phenotype link. In particular, we show that a large fraction of reaction-based designs obtained by current strain design methods are not actually feasible, and show how our approach allows using the same methods to obtain feasible gene-based designs. We also show, by extensive comparison with experimental 13C-flux data, how simple reformulations of different simulation methods with gene-wise objective functions result in improved prediction accuracy. The model transformation proposed in this work enables existing constraint-based methods to be used at the gene level without modification. This automatically leverages phenotype analysis from reaction to gene level, improving the biological insight that can be obtained from genome-scale models.DM was supported by the Portuguese Foundationfor Science and Technologythrough a post-doc fellowship (ref: SFRH/BPD/111519/ 2015). This study was supported by the PortugueseFoundationfor Science and Technology (FCT) under the scope of the strategic fundingof UID/BIO/04469/2013 unitand COMPETE2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145FEDER-000004) fundedby EuropeanRegional Development Fund under the scope of Norte2020Programa Operacional Regional do Norte. This project has received fundingfrom the European Union’s Horizon 2020 research and innovation programme under grant agreementNo 686070. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …
