6,864 research outputs found

    Research on an expert system for database operation of simulation-emulation math models. Volume 1, Phase 1: Results

    Get PDF
    The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge

    Research on an expert system for database operation of simulation-emulation math models. Volume 2, Phase 1: Results

    Get PDF
    A reference manual is provided for NESS, a simulation expert system. This manual gives user information regarding starting and operating NASA expert simulation system (NESS). This expert system provides an intelligent interface to a generic simulation program for spacecraft attitude control problems. A menu of the functions the system can perform is provided. Control repeated returns to this menu after executing each user request

    Enhanced turbulence driven by mesoscale motions and flow-topography interaction in the Denmark Strait Overflow plume

    Get PDF
    The Denmark Strait Overflow (DSO) contributes roughly half to the total volume transport of the Nordic overflows. The overflow increases its volume by entraining ambient water as it descends into the subpolar North Atlantic, feeding into the deep branch of the Atlantic Meridional Overturning Circulation. In June 2012, a multiplatform experiment was carried out in the DSO plume on the continental slope off Greenland (180 km downstream of the sill in Denmark Strait), to observe the variability associated with the entrainment of ambient waters into the DSO plume. In this study, we report on two high-dissipation events captured by an autonomous underwater vehicle (AUV) by horizontal profiling in the interfacial layer between the DSO plume and the ambient water. Strong dissipation of turbulent kinetic energy of O( math formula) W kg−1 was associated with enhanced small-scale temperature variance at wavelengths between 0.05 and 500 m as deduced from a fast-response thermistor. Isotherm displacement slope spectra reveal a wave number-dependence characteristic of turbulence in the inertial-convective subrange ( math formula) at wavelengths between 0.14 and 100 m. The first event captured by the AUV was transient, and occurred near the edge of a bottom-intensified energetic eddy. Our observations imply that both horizontal advection of warm water and vertical mixing of it into the plume are eddy-driven and go hand in hand in entraining ambient water into the DSO plume. The second event was found to be a stationary feature on the upstream side of a topographic elevation located in the plume pathway. Flow-topography interaction is suggested to drive the intense mixing at this site

    Classifying oceanographic structures in the Amundsen Sea, Antarctica

    Get PDF
    Funding: The TARSAN project was funded by the U.S. National Science Foundation, Office of Polar Programs (Grant #1738992) and the UK Natural Environment Research Council (NERC, NE/S006591/1). I.R. was supported by the National Science Foundation’s Southern Ocean Carbon and Climate Observations and Modeling SOCCOM) project under NSF Award PLR-1425989, with additional support from NOAA and NASA.The remote and often ice‐covered Amundsen Sea Embayment in Antarctica is important for transporting relatively warm modified Circumpolar Deep Water (mCDW) to the Western Antarctic Ice Sheet, potentially accelerating its thinning and contribution to sea level rise. To investigate potential pathways and variability of mCDW, 3809 CTD profiles (instrumented seal and ship‐based data) are classified using a machine learning approach (Profile Classification Model). Five vertical regimes are identified, and areas of larger variability highlighted. Three spatial regimes are captured: Off‐Shelf, Eastern and Central Troughs. The on‐shelf profiles further show a separation between cold and warm modes. The variability is higher north of Burke Island and at the southern end of the Eastern Trough, which reflects the convergence of different mCDW pathways between the Eastern and the Central Trough. Finally, a clear but variable clockwise circulation is identified in Pine Island Bay.Publisher PDFPeer reviewe

    A Guided Tour of Issues and Trends: The Thirteenth Annual Health Sciences Lively Lunch

    Get PDF
    In this year\u27s sponsored but no holds barred lunch, the conference theme, Too much is not enough , resonates. Lunch host, Wendy Bahnsen from Rittenhouse offers a brief greeting, and Ramune Kubilius provides the traditional “year in review” synopsis. Moderator Andrea Twiss-Brooks sets the scene and provides a brief introduction to issues of current interest in the health sciences information arena. Topics of this session include: methods of measurement of health sciences journal use (Deborah Blecic); shared collection development and policies (Elizabeth Ketterman); scholarly communication activities in health sciences libraries (Robin Champieux); current challenges, trials, pitfalls and successes of e-books in the health sciences (Anneliese Taylor); provision of information resources for basic scientists (Marysue Schaffer)

    Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey

    Full text link
    We present an internal consistency test of South Pole Telescope (SPT) measurements of the cosmic microwave background (CMB) temperature anisotropy using three-band data from the SPT-SZ survey. These measurements are made from observations of ~2500 deg^2 of sky in three frequency bands centered at 95, 150, and 220 GHz. We combine the information from these three bands into six semi-independent estimates of the CMB power spectrum (three single-frequency power spectra and three cross-frequency spectra) over the multipole range 650 < l < 3000. We subtract an estimate of foreground power from each power spectrum and evaluate the consistency among the resulting CMB-only spectra. We determine that the six foreground-cleaned power spectra are consistent with the null hypothesis, in which the six cleaned spectra contain only CMB power and noise. A fit of the data to this model results in a chi-squared value of 236.3 for 235 degrees of freedom, and the probability to exceed this chi-squared value is 46%.Comment: 21 pages, 4 figures, current version matches version published in JCA

    The role of extreme temperature in cause-specific acute cardiovascular mortality in Switzerland: a case-crossover study

    Get PDF
    Since the 2003 heatwave in Europe, evidence has been rapidly increasing on the association between extreme temperature and all-cause mortality. Little is known, however, about cause-specific cardiovascular mortality, effect modification by air pollution and aircraft noise, and which population groups are the most vulnerable to extreme temperature. We conducted a time-stratified case-crossover study in Zurich, Switzerland, including all adult cardiovascular deaths between 2000 and 2015 with precise individual exposure estimates at home location. We estimated the risk of 24,884 cardiovascular deaths associated with heat and cold using distributed non-linear lag models. We investigated potential effect modification of temperature-related mortality by fine particles, nitrogen dioxide, and night-time aircraft noise and performed stratified analyses across individual and social characteristics. We found increased risk of mortality for heat (odds ratio OR = 1.28 [95% confidence interval: 1.11-1.49] for 99th percentile of daily Tmean (24 degrees C) versus optimum temperature at 20 degrees C) and cold (OR = 1.15 [0.95-1.39], 5th percentile of daily Tmean (-3 degrees C) versus optimum temperature at 20 degrees C). Heat-related mortality was particularly strong for myocardial infarctions and hypertension related deaths, and among older women (>75 years). Analysis of effect modification also indicated that older women with lower socio-economic position and education are at higher risk for heat-related mortality. PM2.5 increased the risk of heat-related mortality for heart failure, but not all-cause cardiovascular mortality. This study provides useful information for preventing cause-specific cardiovascular temperature-related mortality in moderate climate zones comparable to Switzerland
    • 

    corecore