326 research outputs found

    Structural plasticity of the living kinetochore

    Get PDF
    The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells

    CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast

    Get PDF
    Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I

    Recognizing Life Cycle Benefits of Real Time Fatigue Monitoring for Ecosystems

    Get PDF
    Real time fatigue monitoring creates various benefits in multiple categories appearing at different points of the item’s life cycle. One monitoring and analytics service can be beneficial for a large set of actors, an ecosystem. An ecosystem consists of actors that work towards a common goal, a focal value proposition. In our case, this focal value proposition is management of an item’s life cycle in real time. The purpose of this paper is to recognize benefits related to real time monitoring and analytics of fatigue in welded steel structures and to recognize a set of actors that can form a new ecosystem for creating these benefits. The benefits are recognized in interviews with practitioners who observe the lack of reliable analytics in the remaining life of the items they design, manufacture, maintain or operate. The interviewees represent different parts of an item’s life cycle and during the interviews are asked to recognize and rank benefits and to form a potential new ecosystem from their perspective. The recognized benefits are for example in improving communication between product design and production, improved maintenance scheduling, prolonged production time, correctly timed replacement investment decisions. The interviewees do not form a unified opinion of a new ecosystem but rather we recognize two categories of companies that form the basis for future research in the subject. The interviewees agree that real time monitoring holds huge potential for benefits but is not yet adopted in large scale in practice.Post-print / Final draf

    The SUN Protein Mps3 Is Required for Spindle Pole Body Insertion into the Nuclear Membrane and Nuclear Envelope Homeostasis

    Get PDF
    The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition

    A Mathematical Model of Mitotic Exit in Budding Yeast: The Role of Polo Kinase

    Get PDF
    Cell cycle progression in eukaryotes is regulated by periodic activation and inactivation of a family of cyclin–dependent kinases (Cdk's). Entry into mitosis requires phosphorylation of many proteins targeted by mitotic Cdk, and exit from mitosis requires proteolysis of mitotic cyclins and dephosphorylation of their targeted proteins. Mitotic exit in budding yeast is known to involve the interplay of mitotic kinases (Cdk and Polo kinases) and phosphatases (Cdc55/PP2A and Cdc14), as well as the action of the anaphase promoting complex (APC) in degrading specific proteins in anaphase and telophase. To understand the intricacies of this mechanism, we propose a mathematical model for the molecular events during mitotic exit in budding yeast. The model captures the dynamics of this network in wild-type yeast cells and 110 mutant strains. The model clarifies the roles of Polo-like kinase (Cdc5) in the Cdc14 early anaphase release pathway and in the G-protein regulated mitotic exit network

    Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1

    Get PDF
    Histone H2B monoubiquitination by Rad6/Bre1 is required for the trimethylation of both histone H3K4 and H3K79 by COMPASS and Dot1 methyltransferases, respectively. The dependency of methylation at H3K4 and H3K79 on the monoubiquitination of H2BK123 was recently challenged, and extragenic mutations in the strain background used for previous studies or epitope-tagged proteins were suggested to be the sources of this discrepancy. In this study, we show that H3K4 and H3K79 methylation is solely dependent on H2B monoubiquitination regardless of any additional alteration to the H2B sequence or genome. Furthermore, we report that Y131, one of the yeast histone H2A/H2B shuffle strains widely used for the last decade in the field of chromatin and transcription biology, carries a wild-type copy of each of the HTA2 and HTB2 genes under the GAL1/10 promoter on chromosome II. Therefore, we generated the entire histone H2A and H2B alanine-scanning mutant strains in another background, which does not express wild-type histones

    The Inhibition of Polo Kinase by Matrimony Maintains G2 Arrest in the Meiotic Cell Cycle

    Get PDF
    Many meiotic systems in female animals include a lengthy arrest in G2 that separates the end of pachytene from nuclear envelope breakdown (NEB). However, the mechanisms by which a meiotic cell can arrest for long periods of time (decades in human females) have remained a mystery. The Drosophila Matrimony (Mtrm) protein is expressed from the end of pachytene until the completion of meiosis I. Loss-of-function mtrm mutants result in precocious NEB. Coimmunoprecipitation experiments reveal that Mtrm physically interacts with Polo kinase (Polo) in vivo, and multidimensional protein identification technology mass spectrometry analysis reveals that Mtrm binds to Polo with an approximate stoichiometry of 1:1. Mutation of a Polo-Box Domain (PBD) binding site in Mtrm ablates the function of Mtrm and the physical interaction of Mtrm with Polo. The meiotic defects observed in mtrm/+ heterozygotes are fully suppressed by reducing the dose of polo+, demonstrating that Mtrm acts as an inhibitor of Polo. Mtrm acts as a negative regulator of Polo during the later stages of G2 arrest. Indeed, both the repression of Polo expression until stage 11 and the inactivation of newly synthesized Polo by Mtrm until stage 13 play critical roles in maintaining and properly terminating G2 arrest. Our data suggest a model in which the eventual activation of Cdc25 by an excess of Polo at stage 13 triggers NEB and entry into prometaphase

    The Anaphase-Promoting Complex or Cyclosome Supports Cell Survival in Response to Endoplasmic Reticulum Stress

    Get PDF
    The anaphase-promoting complex or cyclosome (APC/C) is a multi-subunit ubiquitin ligase that regulates exit from mitosis and G1 phase of the cell cycle. Although the regulation and function of APC/CCdh1 in the unperturbed cell cycle is well studied, little is known of its role in non-genotoxic stress responses. Here, we demonstrate the role of APC/CCdh1 (APC/C activated by Cdh1 protein) in cellular protection from endoplasmic reticulum (ER) stress. Activation of APC/CCdh1 under ER stress conditions is evidenced by Cdh1-dependent degradation of its substrates. Importantly, the activity of APC/CCdh1 maintains the ER stress checkpoint, as depletion of Cdh1 by RNAi impairs cell cycle arrest and accelerates cell death following ER stress. Our findings identify APC/CCdh1 as a regulator of cell cycle checkpoint and cell survival in response to proteotoxic insults
    corecore