1,850 research outputs found
The identification and exploitation of almost symmetry in planning problems
Previous work in symmetry detection for planning has identified symmetries between domain objects and shown how the exploitation of this information can help reduce search at plan time. However these methods are unable to detect symmetries between objects that are almost symmetrical: where the objects must start (or end) in slightly different configurations but for much of the plan their behaviour is equivalent. In the paper we outline a method for identifying such symmetries and discuss how this symmetry information can be positively exploited to help direct search during planning we have implemented this method and integrated it with the FF-v2.3 planner and in the paper we present results of experiments with this approach that demonstrate its potential
Abstraction-based action ordering in planning
Many planning problems contain collections of symmetric objects, actions and structures which render them difficult to solve efficiently. It has been shown that the detection and exploitation of symmetric structure in planning problems can dramatically reduce the size of the search space and the time taken to find a solution. We present the idea of using an abstraction of the problem domain to reveal symmetric structure and guide the navigation of the search space. We show that this is effective even in domains in which there is little accessible symmetric structure available for pruning. Proactive exploitation represents a flexible and powerfulalternative to the symmetry-breaking strategies exploited in earlier work in planning and CSPs. The notion of almost symmetry is defined and results are presented showing that proactive exploitation of almost symmetry can improve the performance of a heuristic forward search planner
Identification and characterization of a homozygous deletion found in ovarian ascites by representational difference analysis
Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype phenotype correlations
We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations
Morphology and the gradient of a symmetric potential predicts gait transitions of dogs
Gaits and gait transitions play a central role in the movement of animals. Symmetry is thought to govern the structure of the nervous system, and constrain the limb motions of quadrupeds. We quantify the symmetry of dog gaits with respect to combinations of bilateral, fore-aft, and spatio-temporal symmetry groups. We tested the ability of symmetries to model motion capture data of dogs walking, trotting and transitioning between those gaits. Fully symmetric models performed comparably to asymmetric with only a 22% increase in the residual sum of squares and only one-quarter of the parameters. This required adding a spatio-temporal shift representing a lag between fore and hind limbs. Without this shift, the symmetric model residual sum of squares was 1700% larger. This shift is related to (linear regression, n = 5, p = 0.0328) dog morphology. That this symmetry is respected throughout the gaits and transitions indicates that it generalizes outside a single gait. We propose that relative phasing of limb motions can be described by an interaction potential with a symmetric structure. This approach can be extended to the study of interaction of neurodynamic and kinematic variables, providing a system-level model that couples neuronal central pattern generator networks and mechanical models
A cohort study of influences, health outcomes and costs of patients' health-seeking behaviour for minor ailments from primary and emergency care settings
To compare health-related and cost-related outcomes of consultations for symptoms suggestive of minor ailments in emergency departments (EDs), general practices and community pharmacies
Hermitian versus holomorphic complex and quaternionic generalized supersymmetries of the M-theory. A classification
Relying upon the division-algebra classification of Clifford algebras and
spinors, a classification of generalized supersymmetries (or, with a slight
abuse of language,"generalized supertranslations") is provided. In each given
space-time the maximal, saturated, generalized supersymmetry, compatible with
the division-algebra constraint that can be consistently imposed on spinors and
on superalgebra generators, is furnished. Constraining the superalgebra
generators in both the complex and the quaternionic cases gives rise to the two
classes of constrained hermitian and holomorphic generalized supersymmetries.
In the complex case these two classes of generalized supersymmetries can be
regarded as complementary. The quaternionic holomorphic supersymmetry only
exists in certain space-time dimensions and can admit at most a single bosonic
scalar central charge.
The results here presented pave the way for a better understanding of the
various algebra-type of structures which can be introduced in different
space-time signatures and in association with different division algebras, as
well as their mutual relations. In a previous work, e.g., the introduction of a
complex holomorphic generalized supersymmetry was shown to be necessary in
order to perform the analytic continuation of the standard -theory to the
11-dimensional Euclidean space. As an application of the present results, it is
shown that the above algebra also admits a 12-dimensional, Euclidean,
-algebra presentation.Comment: 25 pages, LaTe
Sand in the wheels, or oiling the wheels, of international finance? : New Labour's appeal to a 'new Bretton Woods'
Tony Blair’s political instinct typically is to associate himself only with the future. As such, his explicit appeal to ‘the past’ in his references to New Labour’s desire to establish a “new Bretton Woods” is sufficient in itself to arouse some degree of analytical curiosity (see Blair 1998a). The fact that this appeal was made specifically in relation to Bretton Woods is even more interesting. The resonant image of the international economic context established by the original Bretton Woods agreements invokes a style and content of policy-making which Tony Blair typically dismisses as neither economically nor politically consistent with his preferred vision of the future (see Blair 2000c, 2001b)
Revisiting Clifford algebras and spinors III: conformal structures and twistors in the paravector model of spacetime
This paper is the third of a series of three, and it is the continuation of
math-ph/0412074 and math-ph/0412075. After reviewing the conformal spacetime
structure, conformal maps are described in Minkowski spacetime as the twisted
adjoint representation of the group Spin_+(2,4), acting on paravectors.
Twistors are then presented via the paravector model of Clifford algebras and
related to conformal maps in the Clifford algebra over the lorentzian R{4,1}$
spacetime. We construct twistors in Minkowski spacetime as algebraic spinors
associated with the Dirac-Clifford algebra Cl(1,3)(C) using one lower spacetime
dimension than standard Clifford algebra formulations, since for this purpose
the Clifford algebra over R{4,1} is also used to describe conformal maps,
instead of R{2,4}. Although some papers have already described twistors using
the algebra Cl(1,3)(C), isomorphic to Cl(4,1), the present formulation sheds
some new light on the use of the paravector model and generalizations.Comment: 17 page
A geometric basis for the standard-model gauge group
A geometric approach to the standard model in terms of the Clifford algebra
Cl_7 is advanced. A key feature of the model is its use of an algebraic spinor
for one generation of leptons and quarks. Spinor transformations separate into
left-sided ("exterior") and right-sided ("interior") types. By definition,
Poincare transformations are exterior ones. We consider all rotations in the
seven-dimensional space that (1) conserve the spacetime components of the
particle and antiparticle currents and (2) do not couple the right-chiral
neutrino. These rotations comprise additional exterior transformations that
commute with the Poincare group and form the group SU(2)_L, interior ones that
constitute SU(3)_C, and a unique group of coupled double-sided rotations with
U(1)_Y symmetry. The spinor mediates a physical coupling of Poincare and
isotopic symmetries within the restrictions of the Coleman--Mandula theorem.
The four extra spacelike dimensions in the model form a basis for the Higgs
isodoublet field, whose symmetry requires the chirality of SU(2). The charge
assignments of both the fundamental fermions and the Higgs boson are produced
exactly.Comment: 17 pages, LaTeX requires iopart. Accepted for publication in J. Phys.
A: Math. Gen. 9 Mar 2001. Typos correcte
- …
