Relying upon the division-algebra classification of Clifford algebras and
spinors, a classification of generalized supersymmetries (or, with a slight
abuse of language,"generalized supertranslations") is provided. In each given
space-time the maximal, saturated, generalized supersymmetry, compatible with
the division-algebra constraint that can be consistently imposed on spinors and
on superalgebra generators, is furnished. Constraining the superalgebra
generators in both the complex and the quaternionic cases gives rise to the two
classes of constrained hermitian and holomorphic generalized supersymmetries.
In the complex case these two classes of generalized supersymmetries can be
regarded as complementary. The quaternionic holomorphic supersymmetry only
exists in certain space-time dimensions and can admit at most a single bosonic
scalar central charge.
The results here presented pave the way for a better understanding of the
various M algebra-type of structures which can be introduced in different
space-time signatures and in association with different division algebras, as
well as their mutual relations. In a previous work, e.g., the introduction of a
complex holomorphic generalized supersymmetry was shown to be necessary in
order to perform the analytic continuation of the standard M-theory to the
11-dimensional Euclidean space. As an application of the present results, it is
shown that the above algebra also admits a 12-dimensional, Euclidean,
F-algebra presentation.Comment: 25 pages, LaTe