
Strathprints Institutional Repository

Porteous, J. and Long, D. and Fox, M. (2004) The identification and exploitation of almost symmetry
in planning problems. In: 23rd UK Planning and Scheduling Special Interest Group, 2004-12-20 -
2004-12-21, Cork.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

The Identification and Exploitation of Almost
Symmetries in Planning Problems

Julie Porteous, Derek Long and Maria Fox

Department of Computer and Information Sciences,

University of Strathclyde,

Glasgow, UK

{Julie.Porteous,Derek.Long,Maria.Fox}@cis.strath.ac.uk

Abstract

Previous work in symmetry detection for plan-
ning has identified symmetries between domain
objects and shown how the exploitation of this
information can help reduce search at plan
time. However these methods are unable to
detect symmetries between objects that are al-
most symmetrical: where the objects must start
(or end) in slightly different configurations but
for much of the plan their behaviour is equiv-
alent. In the paper we outline a method for
identifying such symmetries and discuss how
this symmetry information can be positively ex-
ploited to help direct search during planning We
have implemented this method and integrated
it with the FF-v2.3 planner and in the paper
we present results of experiments with this ap-
proach that demonstrate its potential.

1 Introduction

Symmetry can arise in a wide range of search problems,
including CSPs [10], model-checking [9], automated rea-
soning [1] and planning [3]. It has been shown (for exam-
ple by Joslin & Roy 1997 [10] and Fox & Long 1999 [3])
that when such problems feature large-scale symmetric
structure the detection and subsequent exploitation of
that structure can dramatically reduce the size of the
search space and consequent time taken to generate a
solution

A symmetry is a function that maps the structure of
a problem onto itself. In other words, a symmetry is
an automorphism of the problem definition. In planning
problems symmetry can arise from different sources, for
example:

• Object functional equivalence [3]: where symmetry
groups are formed between domain objects that can
be substitute for one another in their functional
roles within a plan. For example, in a logistics do-
main which involves transporting packages between
locations, the individual packages will be named and
distinguished but for those that must start and end
at the same location (with no distinguishing features

other than their names) then these objects are seen
as being functionally equivalent.

• Object configuration [10]: where symmetry groups
are formed between configurations of objects that
are symmetric with one another (this can be seen
as a generalisation of the single object functional
equivalence).

• Plan permutation symmetry [4; 14]: where the sym-
metry group is formed not between domain objects
but between orderings of different plan actions. As
an example, suppose that the plans 〈A; B; C〉 and
〈B; A; C〉 are equivalent. Then the automorphism
that makes this symmetry is the mapping which
swaps the actions A and B and hence they are seen
as symmetrical.

In the work we report here we have focussed on the de-
tection of object symmetries and in particular what we
refer to as almost symmetry between domain objects. We
were motivated by the observation that for many plan-
ning problems valuable object symmetry information is
not identified by existing approaches because the domain
objects are almost symmetrical. This phenomenon arises
in many planning problems where groups of objects be-
gin in slightly different configurations, or are required
to reach slightly different configurations, but where the
majority of their behaviour is essentially equivalent to
the behaviour of the other objects in the group.

To illustrate the idea of almost symmetry, consider
the problem of transporting a number of crates from one
location to another (as in the Depots domain used in
the IPC3 planning competition [11]). Suppose that the
crates must all end up at the same place and they all
start at the same place but that they begin stacked in
several different piles. Any eventual solution plan will
involve unstacking the cargoes, loading them onto what-
ever transport is available and then delivering and un-
loading them. As noted by Fox and Long in [5], this situ-
ation is unfortunate because the fact that the cargoes all
start off stacked in different piles means that there is: no
symmetry of the single object kind (as in the functional
equivalence of [3]) and; probably very little of the object
configuration kind (as exploited by Joslin and Roy [10]),
despite the fact that the human observer can see that

there is a high degree of symmetry in the body of the
problem. We classify situations like this as almost sym-
metric because the objects in the domain can be made
symmetric by applying an appropriate abstraction to the
domain.

An approach proposed by Fox and Long [5] was to
solve the abstracted problem and then to add a plan
fragment to the beginning of the solution in order to
account for the difference between the abstracted initial
state and the real initial state. But we have taken a
different approach and instead are interested in the local
situation of each object in the initial and goal states
and seek to abstract out any irrelevant information for
that object. For example, suppose we have two crates
crateA and crateB, both at the top of a stack of crates
(these could be at the same or at different locations in
the depot world). The local situation of the crates might
be described as:

CrateA: clear(CrateA) and on(CrateA, ?)
CrateB: clear(CrateB) and on(CrateB, ?)

and these crates are viewed as symmetrical because they
are both at the top of (some) stack (we’ve used ? to rep-
resent the crate that they are stacked on since we aren’t
interested in its identity). Their initial state is different
to the two crates on the bottom of each stack, CrateY
and CrateZ, which could be described as follows:

CrateY: on(?,CrateY) and on pallet(CrateY,?)
CrateZ: on(?,CrateZ) and on pallet(CrateZ,?)

At the level of abstraction in which we ignore other infor-
mation (in this case, the precise location of the crates on
the pallets) we can see CrateY and CrateZ as symmet-
rical in so far as they are both on a pallet with another
crate(s) on top. So these objects are seen as almost sym-
metrical and we reason that we may well need to perform
similar operations on these objects during the course of
any eventual solution plan.

The remainder of the paper is organised as follows: in
section 2 we describe a method for automatically identi-
fying almost symmetries from planning problem descrip-
tions and then in section 3 we look at how this infor-
mation might be exploited in a target planning system.
Section 4 discusses results of experiments carried out us-
ing the symmetry information, and in section 5 we look
at our goals for future work.

2 Identification of almost symmetries

Our starting point for identifying almost symmetries was
the method used by Joslin and Roy [10]: for a given
planning problem build a graph representing the object
relationships present in the initial and goal states of the
problem and then use NAUTY [12], the graph automor-
phism discovery tool, to identify automorphisms in the
graph. The key difference with our approach is the way
in which the graph is constructed.

Figure 1 gives an outline algorithm that, given a
plannning problem, identifies a subset of the almost
symmetries of the domain. The algorithm constructs

1. Begin with the graph G, initially empty. The nodes
of G will be coloured.

2. For each object in the domain, add a vertex to G.
Two such vertices Vx and Vy will be the same colour
if they are the same type.

3. For each object in the domain, collect the set of
predicates that it is contained in in the initial state
of the problem, and add this set as a vertex to G.
Two such vertices Vx and Vy are the same colour if

(a) the size of the set of predicates is the same

(b) the predicates in the set have the same names

(c) the predicates have the same number and type
of arguments

(d) the object of interest is in the same position in
the argument (e.g. for object b1, on(b1, b2) is
different to on(b3, b1))

(e) a vertex for a set of predicates never has the
same colour as a vertex for a domain object

4. For each object in the domain, collect the set of
predicates that it is contained in in the goal state of
the problem, and add this set as a vertex to G. Cri-
teria for equality of two such vertices are the same
as for point 3 above.

5. Once generated, give the graph G to NAUTY. It
will return generators for the graphs automorphism
group. We can then restrict the generators to those
vertices representing domain objects and hence the
result will be groups of symmetrical domain objects.

Figure 1: Identification of Almost Symmetries

a coloured graph which captures these almost symme-
tries and then uses NAUTY to find the symmetries of
the graph. The symmetries are restricted to domain ob-
jects.

As an example, consider the simple blocks world prob-
lem shown in figure 2. Firstly the graph will contain
vertices corresponding to each of the domain objects:

vertex 0: b1
vertex 1: b2
vertex 2: b3
vertex 3: b4
vertex 4: b5
vertex 5: b6

Then the grouping of predicates for each domain ob-
ject would lead to the following sets for the initial state
(where the object name in brackets is the domain object
of interest at this vertex):

vertex 6 (b1): {clear(b1),on(b1,b2)}
vertex 7 (b2): {on(b1,b2),ontable(b2)}
vertex 8 (b3): {clear(b3),on(b3,b4)}
vertex 9 (b4): {on(b3,b4),ontable(b4)}
vertex 10 (b5): {clear(b5),on(b5,b6)}

vertex 11 (b6): {on(b5,b5),ontable(b6)}

and the following sets for the goal state:

vertex 12 (b4): {clear(b4),on(b4,b5)}
vertex 13 (b5): {on(b4,b5)}
vertex 14 (b6): {clear(b6),on(b6,b3)}
vertex 15 (b3): {on(b6,b3)}
vertex 16 (b1): {clear(b2),on(b2,b1)}
vertex 17 (b2): {on(b2,b1)}

So the corresponding graph which is input to NAUTY is
as shown below (where Va : Vx, Vy, ..., Vz denotes edges
from vertex Va to vertices Vx, Vy, ..., and Vz .

0: 6, 17
1: 7, 16
2: 8, 15
3: 9, 12
4: 10, 13
5: 11, 14
6: 0
7: 1
8: 2
9: 3
10: 4
11: 5
12: 3
13: 4
14: 5
15: 2
16: 1
17: 0

Also input to NAUTY is the graph colouring information
as follows (here the | delimits the different colours):

[0 : 5|6, 8, 10|7, 9, 11|12, 14, 16|13, 15, 17]

The output from NAUTY is the generators for the
graphs automorphism group. When restricted to domain
objects, the output for this problem is:

vertices 0, 2, 4 or {b1, b3, b5}
vertices 1, 3, 5 or {b2, b4, b6}

and this almost symmetry is precisely what we would
expect from the input problem. From figure 2 we can see
that blocks 1, 3 and 5 will be moved from the (almost)
identical position of being on top of a block to being on
the bottom of a stack (or at least under some other block)
and for blocks 2, 4 and 6 they will all be moved from
being at the base of a stack of blocks to being at the top
of the stack. This symmetry is said to be “almost” since
they start and end in slightly different configurations but
we would suppose that any solution plan will need to
perform a similar set of operations on these groups of
symmetric objects.

3 Exploitation of symmetry information

Using the approach discussed in section 2, we are able to
automatically identify useful looking almost symmetries.
In this section we will consider how best to exploit this
information in order to improve the performance of a

Figure 2: Blocks: Example Problem

target planning system. There are a number of issues to
consider here:

• whether to use negative exploitation where the sym-
metry information is used to prune branches of the
search space; or positive exploitation where the sym-
metry information is used heuristically to decide on
which areas of the search space to explore next.

• the type of problem and whether it can be classi-
fied as low constrained or highly constrained. For
low constrained problems, these problems may be-
come large but they will never (or seldom) require
backtracking because of the lack of constraints in
the problem space. In such problems it is unlikely
that negative exploitation of symmetry (ie pruning)
could be of any help. On the other hand, for highly
constrained problems where there is a high density
of failure (ie bad choices) using symmetry informa-
tion in a negative way is likely to be a very good
strategy since it makes it less likely for the planner
to repeat earlier bad choices.

• the type of planner that we are interested in: opti-
mal planners such as Graphplan [2] are often forced
to backtrack because they are searching for an opti-
mal plan and for such a planner the most promising
strategy would be to use symmetry information neg-
atively to prune branches of the search space (this
is the approach taken by Fox and Long [3]). But for
non optimal planners, such as state space planners
like FF [7] an approach that uses positive exploita-
tion looks promising.

Based on this apparent “good fit” between positive ex-
ploitation of symmetry information and non optimal
planning we decided to investigate this combination in
our experimental evaluation and the actual planning sys-
tem that was chosen was ff-v2.3 [7; 6]. But we also iden-
tified a relationship between the constrained-ness of the
problem domain and the efficacy of positive exploitation
and hence we will include a range of problem domains in
the experiments to test this behaviour. Our hypothesis
would be that positive exploitation would be less use-
ful in highly constrained domains such as Freecell which
feature dead ends and a high density of failure.

In our implementation we explored a simple strategy
where the symmetry information was used as a heuris-

tic guide for selection between proposed action choices.
During plan generation FF performs a forward state
space search and at each stage proposes actions to ap-
ply at the current state. We amend FF’s action selection
strategy to favour actions that helped in earlier plans for
symmetrical objects, in other words the heuristic is to :

... prefer actions that “involve” objects that
are symmetrical to objects that have appeared
in actions earlier in the plan ...

This is consistent with our earlier comments that if we
know that objects are (almost) symmetrical in the con-
text of a particular plan then we will have to perform a
similar set of operations on them.

This heuristic is straightforward to implement in FF.
At each stage during plan generation we have a current
plan which consists of the actions applied so far to get
from the initial state to the current state. At this stage a
set of possible next actions are proposed by FF. We can
bypass its usual action selection strategy by favouring
those which feature objects that are symmetrical to any
that have appeared in actions in the plan so far. For
each action we can simply keep a count of the number
of symmetrical objects, breaking any ties by using FF’s
standard action selection strategy.

To illustrate the use of the symmetry information in ff-
v2.3, consider a Depots problem (pfile3 in the IPC3 test
set) where the following objects are found to be symmet-
ric:

{pallet1, pallet2}
{crate4, crate5}
{hoist0, hoist1}

and at some intermediate point during plan generation
the plan so far will be:

〈drive(truck1,distributor0,depot0),
drive(truck1,depot0,distributor1),
drive(truck0,depot0,distributor1),
lift(hoist2,crate5,crate2,distributor1),
load(hoist2,crate5,truck1,distributor1)〉

Here the set of actions proposed by FF are:

drive(truck1,depot0,distributor0)
drive(truck1,depot0,distributor1)
drop(hoist2,crate2,pallet2,distributor1)
lift(hoist0,crate1,pallet0,depot0)
lift(hoist1,crate4,crate3,distributor0)

and the highest rated symmetrical action, and hence the
action selected for application next, is

lift(hoist1,crate4,crate3,distributor0)

because the action appears in the plan so far and also
it contains an object that is symmetrical with another
object in that action (crate4). So it can be seen that our
strategy is forcing the planner to commit earlier to ac-
tions that have proved successful earlier for symmetrical
objects (ie we needed to lift up crate5 and it may be a
good idea to do the same thing with crate4).

We tested this strategy in a series of experiments (see
section 4) and the results are promising. But there are
more sophisticated ways of using this information and
we return to discussion of this in section 5.

4 Experimental Results

In this section we include results of some experiments
that compare the performance of the planner ff-v2.3 [7;
6] with a version of the same planner that uses symmetry
information as a positive heuristic in deciding which ac-
tion to apply next. We’ll call this planner ff-v2.3+symm.
For the domains: depots, driverlog, freecell and rovers
these problem sets are from the IPC3 [11] domains repos-
itory and the numbers down the left hand side of the ta-
bles are the problem numbers. We also included results
for some randomly generated gripper problems and here
the left hand column of the table, B-G, gives the number
of balls and the number of grippers respectively. For each
planner we have included the number of states expanded,
the overall CPU time taken to generate a solution and
the length of the plan. We used a 100 second time cut-
off for CPU time and use a - to show that the planner
failed to solve the problem within that time limit. For
ff-v2.3+symm, in the time column, we have included in
brackets the time taken for the symmetry pre-processing.

Table 1 shows the results for the Depots domain. We
observe that in about half of the problem instances ff-
v2.3+symm expands fewer states to find a solution to
the problem. But the behaviour is most interesting in
those problems which appear to be harder for ff-v2.3
(for example problems 10, 12, 15 and 20). For these
problems, both the number of states expanded and the
overall CPU time is greatly reduced with the use of sym-
metry information. It can also be seen that the time for
pre-processing the symmetry information remains con-
sistently low across the set of problems.

The results for the Driverlog domain (see table 2) show
a slightly different picture. For most of the problems
that ff-v2.3+symm managed to solve there was a reduc-
tion in the number of states that were expanded but in
most cases the reduction was slight and was certainly
not sufficient to improve the overall time taken to solve
the problem instance. How can we explain this? Is it the
case that there is little opportunity to exploit symmetry
in this domain? In this domain the idea of looking at
the local characteristics of each object fails to yield much
useful information. For example, for pfile9 the locations
of the packages (package1, ..., package6) are initially

at(package1,s2)
at(package2,s1)
at(package3,s3)
at(package4,s0)
at(package5,s1)
at(package6,s1)

and the local properties of these objects in the goal is:

at(package1,s3)
at(package2,s2)

ff-v2.3 ff-v2.3+symm

states time len states time len

1 20 0.01 10 20 0.01 (0.02) 10
2 33 0.01 15 32 0.02 (0.01) 15
3 318 0.07 37 300 0.07 (0.02) 37
4 - - - - - -
5 - - - - - -
6 - - - - - -
7 148 0.04 27 154 0.05 (0.01) 27
8 - - - - - -
9 2356 2.67 75 2663 3.49 (0.04) 75
10 - - - 41764 96.99 (0.01) 29
11 574 0.60 63 414 0.50 (0.03) 62
12 5008 16.65 94 1612 5.60 (0.02) 86
13 79 0.10 26 70 0.09 (0.02) 26
14 427 0.45 37 432 0.46 (0.02) 37
15 22421 80.89 85 12312 33.30 (0.03) 76
16 108 0.12 28 95 0.11 (0.01) 28
17 1600 2.97 38 1600 3.11 (0.02) 38
18 533 2.97 60 425 2.52 (0.02) 65
19 430 0.70 47 436 0.79 (0.01) 45
20 6927 47.24 98 5759 40.18 (0.02) 99
21 104 1.32 32 91 1.32 (0.04) 32
22 - - - - - -

Table 1: Depots Experimental Results

at(package3,s1)
at(package4,s0)
at(package5,s1)
at(package6,s1)

and all 6 packages are found to be symmetrical. But
this tells us little and here the abstraction works against
us since for this domain/problem the actual location of
each of the packages is important. For this reason we
combined our analysis with an implementation of the
approach from [10] and this did help us discriminate
some more useful symmetry groups. For example for
this problem the object configuration approach enabled
us to further identify package5 and package6 as symmet-
rical (in fact they both stay in the same location for
initial state and goal). So from these results the overall
picture is that the symmetry analysis yields little gain
in this domain.

The potential of using almost symmetry is shown in
the results for the Freecell domain shown in table 3.
Here, there is a reduction in the number of states ex-
panded in most of the instances that are solved by ff-
v2.3+symm (and this manages to solve 1 more instance
than the base planner). And for some instances (see for
example, problems 9, 10, 13, 15 and 17) the reduction is
quite dramatic both in terms of the number of states and
the overall time taken to generate the solution (including
time taken to identify symmetries which remains consis-
tently low). This is what we would expect since this
domain features the sort of local almost symmetry that
we are interested in: for example for cards that are in

ff-v2.3 ff-v2.3+symm

states time len states time len

1 9 0.01 8 9 0.01 (0.03) 8
2 204 0.03 22 204 0.02 (0.02) 22
3 15 0.01 12 15 0.01 (0.01) 12
4 230 0.02 16 227 0.02 (0.03) 16
5 291 0.03 22 290 0.03 (0.02) 22
6 232 0.02 13 231 0.03 (0.01) 13
7 41 0.01 17 39 0.02 (0.01) 17
8 615 0.05 23 604 0.05 (0.01) 23
9 631 0.06 31 609 0.07 (0.02) 31
10 48 0.02 20 51 0.03 (0.01) 21
11 67 0.03 25 63 0.03 (0.02) 25
12 4601 0.99 52 4601 1.00 (0.06) 52
13 1891 0.44 36 1885 0.45 (0.1) 36
14 3421 0.54 38 3387 0.56 (0.06) 38
15 221 0.21 48 148 0.17 (0.10) 43
16 - - - - - -
17 - - - - - -
18 - - - - - -
19 - - - - - -
20 - - - - - -

Table 2: Driverlog Experimental Results

the middle of a column (e.g. in the midst of a stack) we
will have to do a similar series of things to get it to its
home position.

However, in some instances the use of the symme-
try information can seriously degrade performance (e.g.
problems 7, 8, 14 and 16). How can we explain this be-
haviour? This may be because this problem domain is
quite a highly constrained domain and it may indicate
that in some cases the positive exploitation fails to avoid
bad choices that could lead to dead ends.

The picture from the results in the Rovers domain (ta-
ble 4) is very encouraging. Here there is an improvement
in the number of states expanded in half of the instances
and this improvement becomes more marked as the prob-
lem instances increase in size. Also, encouraging is the
observation that the use of symmetries doesn’t degrade
performance in the problem instances from the IPC3 test
set.

Finally, we ran some experiments in the gripper do-
main to illustrate the impact of symmetry on perfor-
mance of FF-v2.3, the results are shown in table 5. In
the table the problem sizes are given as B-G where B
is the number of balls and G is the number of grippers.
The results do suggest that the performance of FF-v2.3
degrades as we increase the number of grippers and es-
pecially when the number of grippers is greater than the
number of balls. This suggests that ff is spending consid-
erable time reasoning about the redundant symmetrical
gripper arms as choices for moving the balls

ff-v2.3 ff-v2.3+symm

states time len states time len

1 33 0.03 9 26 0.03 (0.05) 9
2 24 0.05 17 22 0.04 (0.06) 17
3 40 0.07 23 38 0.07 (0.06) 22
4 88 0.14 33 61 0.11 (0.06) 31
5 80 0.26 35 123 0.36 (0.06) 44
6 121 0.62 39 80 0.40 (0.07) 37
7 220 1.01 57 486 1.86 (0.07) 46
8 146 1.14 59 318 2.22 (0.07) 60
9 431 2.75 49 160 1.17 (0.06) 61
10 237 2.51 61 80 0.97 (0.08) 51
11 613 6.37 82 589 6.21 (0.09) 81
12 97 1.00 52 98 1.10 (0.08) 52
13 - - - 964 15.88 (0.09) 68
14 473 7.05 69 718 11.95 (0.11) 69
15 3866 73.29 76 859 18.97 (0.08) 89
16 271 5.07 71 602 13.07 (0.11) 73
17 352 9.51 81 169 4.58 (0.11) 75
18 - - - - - -
19 - - - - - -
20 - - - - - -

Table 3: Freecell Experimental Results

ff-v2.3 ff-v2.3+symm

states time len states time len

1 14 0.02 10 14 0.02 (0.02) 10
2 10 0.01 8 10 0.02 (0.03) 8
3 20 0.01 13 20 0.02 (0.05) 13
4 9 0.01 8 9 0.02 (0.03) 8
5 53 0.01 22 53 0.02 (0.04) 22
6 189 0.04 38 196 0.03 (0.03) 38
7 37 0.02 18 36 0.02 (0.04) 18
8 96 0.03 28 85 0.03 (0.04) 28
9 125 0.04 33 106 0.04 (0.04) 33
10 199 0.05 37 214 0.06 (0.04) 39
11 92 0.04 37 101 0.05 (0.04) 37
12 35 0.03 19 36 0.02 (0.03) 19
13 327 0.12 46 316 0.12 (0.05) 46
14 71 0.03 28 71 0.04 (0.04) 28
15 281 0.11 42 273 0.11 (0.05) 42
16 468 0.15 46 388 0.14 (0.06) 46
17 246 0.18 49 211 0.17 (0.09) 49
18 307 0.33 42 236 0.27 (0.11) 44
19 1144 2.74 74 1054 1.98 (0.12) 74
20 2176 7.41 96 1646 5.32 (0.17) 96

Table 4: Rovers Experimental Results

ff-v2.3 ff-v2.3+symm

states time len states time len

50-50 152 1.85 101 104 1.01 101
(0.28)

50-100 152 4.19 101 104 2.29 101
(0.73)

100-50 352 10.22 203 207 5.20 203
(0.91)

100-100 302 15.95 201 204 8.09 201
(1.81)

100-150 302 28.35 201 204 15.42 201
(3.20)

200-200 - - - 404 66.78 401
(14.27)

Table 5: Gripper Experimental Results

5 Conclusions and Future Work

In the paper we have introduced a method for extract-
ing almost symmetries from an input planning problem,
discussed how this information could be exploited in a
target planner and discussed the results of experiments
on the implemented system. The results (see section 4)
show the potential of this approach: the use of symmetry
information as a positive heuristic to select next action
application can make a significant reduction on the num-
ber of states expanded during search and also the overall
time taken to generate a solution plan.

These promising results make us keen to further de-
velop this work and the first part of that is to carry
out a more extensive set of experimental tests to try
and build up a clearer picture of the effect of the pos-
itive exploitation of almost symmetry information. In
addition we are keen to further develop the way that
the symmetry information is exploited by the target
planning system. An important feature of (almost)
symmetry is that it is dynamic and changes during
the course of a plan so a group of domain objects
may be (almost) symmetric during early stages of the
plan and then this changes and they become symmet-
ric with other objects during later and final stages of
the plan. The idea is to use landmarks analysis [13;
8] to decompose a planning problem into sub-problems
and then to identify (almost) symmetrical objects for
each decomposed part of the problem. It is anticipated
that this will both increase the amount of symmetry in-
formation that is detected and also the impact that this
makes on planner performance.

References

[1] G. Audemard and B. Benhamou. Reasoning by
Symmetry and Function ordering in Finite Model
Generation. In Proceedings of the 18th International
Conference on Automated Deduction, 2002.

[2] A. Blum and M. Furst. Fast Planning through Plan-
graph Analysis. In Proceedings of the 14th Inter-

national Joint Conference on Artificial Intelligence
(IJCAI), 1995.

[3] M. Fox and D. Long. The Detection and Exploita-
tion of Symmetry in Planning. In Proceedings of
the 16th International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1999.

[4] M. Fox and D. Long. Plan Permutation Symmetries
as a source of Planner Inefficiency. In Proceedings of
the ?? Workshop of the UK Planning and Schedul-
ing Special Interest Group (PLANSIG), 2003.

[5] M. Fox and D. Long. Symmetries in Planning Prob-
lems. In Proceedings of SymCon, 2003.

[6] J. Hoffmann. The FF-v2.3 planner is avail-
able to download from http://www.informatik.uni-
freiburg.de/∼hoffmann/ff.html.

[7] J. Hoffmann and B. Nebel. The FF Planning Sys-
tem: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research (JAIR),
2001.

[8] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered
Landmarks in Planning. To appear in: Journal of
Artificial Intelligence Research (JAIR), 2004.

[9] C. N. Ip and D. L. Dill. Better Verification through
Symmetry. Formal Methods in System Design, 9,
2001.

[10] D. Joslin and A. Roy. Exploiting symmetry in lifted
CSPs. In Proceedings of the 14th National Confer-
ence on Artificial Intelligence (AAAI), 1997.

[11] D. Long and M. Fox (chairs). The Third In-
ternational Planning Competition (IPC3), 2002.
http://planning.cis.strath.ac.uk/competition/.

[12] B. McKay. Nauty Users Guide 1.5. Technical Report
TR-CS-90-02, Australian National University, 1990.

[13] J. Porteous, L. Sebastia, and J. Hoffmann. On the
Extraction, Ordering and Usage of Landmarks in
Planning. In Proceedings of the 6th European Con-
ference on Planning (ECP), 2001.

[14] J. Rintanen. Symmetry reduction for SAT repre-
sentations of transition systems. In Proceedings of
the 13th International Conference on Planning and
Scheduling, 2003.

