14 research outputs found

    Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Australian plague locust, <it>Chortoicetes terminifera</it>, is among the most promising species to unravel the suites of genes underling the density-dependent shift from shy and cryptic solitarious behaviour to the highly active and aggregating gregarious behaviour that is characteristic of locusts. This is because it lacks many of the major phenotypic changes in colour and morphology that accompany phase change in other locust species. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the most sensitive method available for determining changes in gene expression. However, to accurately monitor the expression of target genes, it is essential to select an appropriate normalization strategy to control for non-specific variation between samples. Here we identify eight potential reference genes and examine their expression stability at different rearing density treatments in neural tissue of the Australian plague locust.</p> <p>Results</p> <p>Taking advantage of the new orthologous DNA sequences available in locusts, we developed primers for genes encoding 18SrRNA, ribosomal protein L32 (RpL32), armadillo (Arm), actin 5C (Actin), succinate dehydrogenase (SDHa), glyceraldehyde-3P-dehydrogenase (GAPDH), elongation factor 1 alpha (EF1a) and annexin IX (AnnIX). The relative transcription levels of these eight genes were then analyzed in three treatment groups differing in rearing density (isolated, short- and long-term crowded), each made up of five pools of four neural tissue samples from 5<sup>th </sup>instar nymphs. SDHa and GAPDH, which are both involved in metabolic pathways, were identified as the least stable in expression levels, challenging their usefulness in normalization. Based on calculations performed with the geNorm and NormFinder programs, the best combination of two genes for normalization of gene expression data following crowding in the Australian plague locust was EF1a and Arm. We applied their use to studying a target gene that encodes a Ca<sup>2+ </sup>binding glycoprotein, <it>SPARC</it>, which was previously found to be up-regulated in brains of gregarious desert locusts, <it>Schistocerca gregaria</it>. Interestingly, expression of this gene did not vary with rearing density in the same way in brains of the two locust species. Unlike <it>S. gregaria</it>, there was no effect of any crowding treatment in the Australian plague locust.</p> <p>Conclusion</p> <p>Arm and EF1a is the most stably expressed combination of two reference genes of the eight examined for reliable normalization of RT-qPCR assays studying density-dependent behavioural change in the Australian plague locust. Such normalization allowed us to show that <it>C. terminifera </it>crowding did not change the neuronal expression of the <it>SPARC </it>gene, a gregarious phase-specific gene identified in brains of the desert locust, <it>S. gregaria</it>. Such comparative results on density-dependent gene regulation provide insights into the evolution of gregarious behaviour and mass migration of locusts. The eight identified genes we evaluated are also candidates as normalization genes for use in experiments involving other Oedipodinae species, but the rank order of gene stability must necessarily be determined on a case-by-case basis.</p

    Uncertainity of fetal fraction determination in non-invasive prenatal screening by highly polymorphic SNPs

    No full text
    Fetal fractionandthechromosomerepresentationare the two keyquantities usedinNon-Invasive PrenatalScreening(NIPS)todeterminetheaneuploidystatusofafetus.Severalmethodsforfetalfractiondeterminationhavebeenproposedintheliterature,includingaclassofthemethods,denotedsnpFF,basedonhigh-coveragetargeted sequencing of highly polymorphic Single Nucleotide Polymorphisms (SNPs). The variant of snpFF,investigatedhere,hassimilarpropertiesastheothervariantsofsnpFF.WepointoutthatthevariabilityoftheindividualinformativeSNPs-basedestimatesoffetalfractionincreaseswiththeincreaseoffetalfraction.At4%fetalfractiontheInter-QuartileRange(IQR)oftheindividualestimatesoffetalfractionisaround3%anditincreasesto6%at15%fetalfraction.snpFFcannotdetectfetalfractionbelow2.5%becausethenumberofinformativeSNPsbecomestoosmall,evenzero.L

    Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia

    Get PDF
    Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. We report that somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia ( ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis. All mutations were missense, and some were predicted to destabilize interdomain interactions controlling the activity of the kinase. Three mutations that were studied promoted JAK1 gain of function and conferred interleukin (IL)-3- independent growth in Ba/F3 cells and/ or IL-9-independent resistance to dexamethasone-induced apoptosis in T cell lymphoma BW5147 cells. Such effects were associated with variably enhanced activation of multiple downstream signaling pathways. Leukemic cells with mutated JAK1 alleles shared a gene expression signature characterized by transcriptional up-regulation of genes positively controlled by JAK signaling. Our findings implicate dysregulated JAK1 function in ALL, particularly of T cell origin, and point to this kinase as a target for the development of novel antileukemic drugs

    Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions

    No full text
    \ua9 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024.Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals (rs7629500) in the 3â€Č untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23–3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals
    corecore