1,120 research outputs found
Detection of extrasolar planets by the large deployable reflector
The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively
An extended soft-cube model for the thermal accommodation of gas atoms on solid surfaces
A numerical soft cube model was developed for calculating thermal accommodation coefficients alpha and trapping fractions f sub t for the interaction of gases incident upon solid surfaces. A semiempirical correction factor c which allows the calculation of alpha and f sub t when the collision times are long compared to the surface oscillator period were introduced. The processes of trapping, evaporation, and detailed balancing were discussed. The numerical method was designed to treat economically and with moderate (+ or - 20 percent) accuracy the dependence of alpha and f sub t on finite and different surface and gas temperatures for a large number of gas/surface combinations. Comparison was made with experiments of rare gases on tungsten and on alkalis, as well as one astrophysical case of H2 on graphite. The dependence of alpha on the soft cube dimensionless parameters is presented graphically
Diffusion-limited reactions and mortal random walkers in confined geometries
Motivated by the diffusion-reaction kinetics on interstellar dust grains, we
study a first-passage problem of mortal random walkers in a confined
two-dimensional geometry. We provide an exact expression for the encounter
probability of two walkers, which is evaluated in limiting cases and checked
against extensive kinetic Monte Carlo simulations. We analyze the continuum
limit which is approached very slowly, with corrections that vanish
logarithmically with the lattice size. We then examine the influence of the
shape of the lattice on the first-passage probability, where we focus on the
aspect ratio dependence: Distorting the lattice always reduces the encounter
probability of two walkers and can exhibit a crossover to the behavior of a
genuinely one-dimensional random walk. The nature of this transition is also
explained qualitatively.Comment: 18 pages, 16 figure
Low EUV Luminosities Impinging on Protoplanetary Disks
The amount of high-energy stellar radiation reaching the surface of
protoplanetary disks is essential to determine their chemistry and physical
evolution. Here, we use millimetric and centimetric radio data to constrain the
EUV luminosity impinging on 14 disks around young (~2-10Myr) sun-like stars.
For each object we identify the long-wavelength emission in excess to the dust
thermal emission, attribute that to free-free disk emission, and thereby
compute an upper limit to the EUV reaching the disk. We find upper limits lower
than 10 photons/s for all sources without jets and lower than photons/s for the three older sources in our sample. These latter
values are low for EUV-driven photoevaporation alone to clear out
protoplanetary material in the timescale inferred by observations. In addition,
our EUV upper limits are too low to reproduce the [NeII] 12.81 micron
luminosities from three disks with slow [NeII]-detected winds. This indicates
that the [NeII] line in these sources primarily traces a mostly neutral wind
where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative
mass loss rates than those predicted by EUV-driven models alone. In summary,
our results suggest that high-energy stellar photons other than EUV may
dominate the dispersal of protoplanetary disks around sun-like stars.Comment: Accepted for publication to The Astrophysical Journa
Far-IR spectroscopy of the galactic center: Neutral and ionized gas in the central 10 pc of the galaxy
The 3P1 - 3P2 fine structure line emission from neutral atomic oxygen at 63 microns in the vicinity of the galactic center was mapped. The emission is extended over more than 4' (12 pc) along the galactic plane, centered on the position of Sgr A West. The line center velocities show that the O I gas is rotating around the galactic center with an axis close to that of the general galactic rotation, but there appear also to be noncircular motions. The rotational velocity at R is approximately 1 pc corresponds to a mass within the central pc of about 3 x 10(6) solar mass. Between 1 and 6 pc from the center the mass is approximately proportional to radius. The (O I) line probability arises in a predominantly neutral, atomic region immediately outside of the ionized central parsec of out galaxy. Hydrogen densities in the (O I) emitting region are 10(3) to 10(6) cm(-3) and gas temperatures are or = 100 K. The total integrated luminosity radiated in the line is about 10(5) solar luminosity, and is a substantial contribution to the cooling of the gas. Photoelectric heating or heating by ultraviolet excitation of H2 at high densities (10(5) cm(-3)) are promising mechanisms for heating of the gas, but heating due to dissipation of noncircular motions of the gas may be an alternative possibility. The 3P1 - 3P0 fine structure line of (O III) at 88 microns toward Sgr A West was also detected. The (O III) emission comes from high density ionized gas (n 10(4) cm(-3)), and there is no evidence for a medium density region (n 10(3) cm(-3)), such as the ionized halo in Sgr A West deduced from radio observations. This radio halo may be nonthermal, or may consist of many compact, dense clumps of filaments on the inner edges of neutral condensations at R or = 2 pc
Studies of low-mass star formation with the large deployable reflector
Estimates are made of the far-infrared and submillimeter continuum and line emission from regions of low mass star formation. The intensity of this emission is compared with the sensitivity of the large deployable reflector (LDR), a large space telescope designed for this wavelength range. The proposed LDR is designed to probe the temperature, density, chemical structure, and the velocity field of the collapsing envelopes of these protostars. The LDR is also designed to study the accretion shocks on the cores and circumstellar disks of low-mass protostars, and to detect shock waves driven by protostellar winds
Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces
The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small
Multiple Imputation Using Gaussian Copulas
Missing observations are pervasive throughout empirical research, especially
in the social sciences. Despite multiple approaches to dealing adequately with
missing data, many scholars still fail to address this vital issue. In this
paper, we present a simple-to-use method for generating multiple imputations
using a Gaussian copula. The Gaussian copula for multiple imputation (Hoff,
2007) allows scholars to attain estimation results that have good coverage and
small bias. The use of copulas to model the dependence among variables will
enable researchers to construct valid joint distributions of the data, even
without knowledge of the actual underlying marginal distributions. Multiple
imputations are then generated by drawing observations from the resulting
posterior joint distribution and replacing the missing values. Using simulated
and observational data from published social science research, we compare
imputation via Gaussian copulas with two other widely used imputation methods:
MICE and Amelia II. Our results suggest that the Gaussian copula approach has a
slightly smaller bias, higher coverage rates, and narrower confidence intervals
compared to the other methods. This is especially true when the variables with
missing data are not normally distributed. These results, combined with
theoretical guarantees and ease-of-use suggest that the approach examined
provides an attractive alternative for applied researchers undertaking multiple
imputations
On the origin of ionising photons emitted by T Tauri stars
We address the issue of the production of Lyman continuum photons by T Tauri
stars, in an attempt to provide constraints on theoretical models of disc
photoionisation. By treating the accretion shock as a hotspot on the stellar
surface we show that Lyman continuum photons are produced at a rate
approximately three orders of magnitude lower than that produced by a
corresponding black body, and that a strong Lyman continuum is only emitted for
high mass accretion rates. When our models are extended to include a column of
material accreting on to the hotspot we find that the accretion column is
extremely optically thick to Lyman continuum photons. Further, we find that
radiative recombination of hydrogen atoms within the column is not an efficient
means of producing photons with energies greater than 13.6eV, and find that an
accretion column of any conceivable height suppresses the emission of Lyman
continuum photons to a level below or comparable to that expected from the
stellar photosphere. The photospheric Lyman continuum is itself much too weak
to affect disc evolution significantly, and we find that the Lyman continuum
emitted by an accretion shock is similarly unable to influence disc evolution
significantly. This result has important consequences for models which use
photoionisation as a mechanism to drive the dispersal of circumstellar discs,
essentially proving that an additional source of Lyman continuum photons must
exist if disc photoionisation is to be significant.Comment: 6 pages, 4 figures. Accepted for publication in MNRA
Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission
Using Keck/HIRES spectra {\Delta}v ~ 7 km/s, we analyze forbidden lines of [O
I] 6300 {\AA}, [O I] 5577 {\AA} and [S II] 6731 {\AA} from 33 T Tauri stars
covering a range of disk evolutionary stages. After removing a high velocity
component (HVC) associated with microjets, we study the properties of the low
velocity component (LVC). The LVC can be attributed to slow disk winds that
could be magnetically (MHD) or thermally (photoevaporative) driven. Both of
these winds play an important role in the evolution and dispersal of
protoplanetary material.
LVC emission is seen in all 30 stars with detected [O I] but only in 2 out of
eight with detected [S II] , so our analysis is largely based on the properties
of the [O I] LVC. The LVC itself is resolved into broad (BC) and narrow (NC)
kinematic components. Both components are found over a wide range of accretion
rates and their luminosity is correlated with the accretion luminosity, but the
NC is proportionately stronger than the BC in transition disks.
The FWHM of both the BC and NC correlates with disk inclination, consistent
with Keplerian broadening from radii of 0.05 to 0.5 AU and 0.5 to 5 AU,
respectively. The velocity centroids of the BC suggest formation in an MHD disk
wind, with the largest blueshifts found in sources with closer to face-on
orientations. The velocity centroids of the NC however, show no dependence on
disk inclination. The origin of this component is less clear and the evidence
for photoevaporation is not conclusive
- …
