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Abstract

Missing observations are pervasive throughout observational research, especially in
the social sciences. Despite multiple approaches to dealing adequately with missing
data, many scholars still rely on list-wise deletion. In this article, we present a
simple to use approach to multiple imputation. We show that using Gaussian copulas
for multiple imputation allows scholars to attain estimation results that have good
coverage and small bias. Using simulated as well as observational data from published
social science research we compare imputation via Gaussian copulas with two other
widely used imputation methods: MICE and Amelia II. The three approaches perform
relatively similarly. Importantly, however, imputation via the Gaussian copula is
simple and does not require the researcher to undertake any transformation of the
data or specification of distributional assumptions for individual variables but returns
a valid posterior density of the imputed data.

Keywords: missing data, Bayesian statistics, categorical data
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1 Introduction

Missing data problems are ubiquitous in observational data and common among social
science applications. Statistical inference that does not adequately account for the missing
data can lead to biased results and inflated (or deflated) variance estimates (Rubin, 1976,
King et al., 2001, White and Carlin, 2010, Molenberghs et al., 2014). Despite these well
established results many applied scientists still choose to ignore this problem. Principled
approaches to missing data have existed for over three decades, and since their formalization
in Rubin (1976) the number of readily available statistical software to apply them have
rapidly grown (King et al., 2001, Honaker and King, 2010, Van Buuren and Groothuis-
Oudshoorn, 2011, Kropko et al., 2014) (See also the special issue on the State of Multiple
Imputation Software in the Journal of Statistical Software in 2011 (Yucel, 2011)). Most
often these software use multiple imputation (MI) to fill in the missing data and create
m completed data sets, which are analyzed independently and combined to obtain a final
estimate that accounts for the uncertainty due to the missing data (Rubin, 1996, 2004).

Even though imputation packages exist in almost any statistical software platform they
are still under utilized. Van Buuren (2012) surveys multiple imputation approaches and
his website (http://www.stefvanbuuren.nl/mi/index.html) suggests that the number
of publications with “multiple imputation” in the title is growing exponentially from 1990-
2011, but is still only a few dozen each year. We believe this is due to two reasons. First,
imputation techniques are not well understood and can produce results that seem counter-
intuitive. Graham (2009) highlights a number of myths that discourage people from using
imputation methods in practice. For example, many people still believe that one cannot
impute the dependent variable or are unsure what to do if the MAR assumption does not
hold. Second, imputation techniques are burdensome and require three stages: data impu-
tation, model estimation, and combining estimation results. Particularly, the specification
and estimation of the imputation model can be time consuming and computationally ex-
pensive. This poses an enormous problem with the increasing prevalence of “big data” as
the issues of model specification and computational cost become more significant as sample
size and the number of variables increase.

For example, one of the most commonly used multiple imputation techniques, multiple
imputation via chained equations (MICE), requires users to specify the “correct” impu-
tation model (i.e. probability distribution and predictors) for each variable that is to be
imputed (Van Buuren and Groothuis-Oudshoorn, 2011). Only if each specification is cor-
rect, is MICE guaranteed to converge to a valid joint distribution. Similarly, when using
Amelia II (Honaker et al., 2013), another widely used multiple imputation method, users
should specify the correct variable types and transformation in their data set and a number
of tuning parameters.

To tackle these problems our paper presents a semi-parametric Gaussian copula ap-
proach to missing data imputation. Copulas were first used for imputation by Käärik and
Käärik (2009), who introduce the use of Gaussian copulas to model missing values based on
the observed data. Recently, Di Lascio et al. (2015) have shown how copulas from several
di↵erent distributions can be used for imputations and compare their approach to nearest
neighbor and regression imputation. Within sociology, Vuolo (2015) presents the use of
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copulas for modeling of join distributions. Nevertheless, the potential use of copulas for
multiple imputation applications has not been thoroughly discussed, nor has it been widely
adopted, especially within the social sciences. The method we present here was developed
by Ho↵ (2007) and implemented in an R package (Ho↵, 2010). Based on the use of the
rank-likelihood, the method presented here has additional advantages over those previous
ones as it allows for the imputation of binary and ordinal variables and does not require
the specification of marginal or conditional distributions.

In this paper, we provide an overview and discussion of common imputation methods
and show that the semi-parametric Gaussian copula model is easily usable for multiple
imputation. For example, it does not require any prior specification by the user or prepa-
ration of the data. Moreover, provided the MCMC chains converge, the output from the
copula model represents a valid posterior density. In addition, we provide guidance on how
to evaluate di↵erent multiple imputation techniques. The accuracy of imputations is often
judged based on mean squared error between the “true” and imputed values. As we elab-
orate below, this can be misleading. Instead, multiple imputation ought to be evaluated
on bias, coverage rate, and interval length for the regression coe�cients of interest (Rubin,
1996).

The remainder of this article is organized as follows. Section 2, discusses some common
approaches to missing data. Section 3, thoroughly explains the Gaussian copula approach
and how it can be utilized to impute missing data. Section 4, presents a large simulation
study that assesses the properties of our proposed approach and compares it to some of
the most commonly used procedures. Section 5, applies the methods from Section 4 on a
real data example. Section 6, gives our concluding remarks as well as some guidance for
practitioners.

2 Common Approaches to Multiple Imputation

The standard techniques employed to deal with missing data first require an assumption
regarding the observed missing data pattern, Rubin (1976, 1987a,b), Little and Rubin
(2002) introduced three of these. The missing data are missing completely at random
(MCAR) when the probability of the observed missing data pattern is unchanged regardless
of what values both the observed and missing data take. The missing data are missing at
random (MAR) when the probability of observing the missing data pattern is unchanged
no matter what values the missing data take. Finally, the missing data are missing not at
random (MNAR) when the probability of observing the missing data pattern changes for
some values of the missing data.

These definitions are important both from a theoretical and a practical point of view.
Most basic methods, such as list-wise deletion and mean imputation, require the MCAR
assumption (Graham, 2009). To achieve valid inference under the Bayesian and likelihood
paradigms, whilst ignoring the missing data mechanism, we require the stronger MAR
assumption. Horton and Kleinman (2007) provide a good overview of some valid proce-
dures including using the expectation maximization (EM) algorithm and chained equations
(Van Buuren, 2012) to obtain multiple imputations (MI) (Rubin, 1987b). Unfortunately,
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as Horton and Kleinman (2007) conclude, there is little evidence to suggest that these
techniques are widely employed by analysts in medicine and the social sciences.

Multiple imputation (MI) refers to any method that replaces the set of missing values
with multiple plausible values, thus obtaining m completed data sets (Rubin, 1996). It has
been applied in many fields, but the most well-known application is in survey sampling.
In this setting, we use the responses of those who answered a particular set of questions
to provide an estimate of the response of those who did not answer a particular question.
One approach to generating MI is to use a joint multivariate model for the observed and
missing data, and then draw from the posterior distribution of the missing data given
the observed data. As the name indicates, multiple imputation relies on the strategy of
generating multiple imputed observations for each missing data point, resulting in the
creation of several complete data sets. Rubin (1987a) originally suggested creating five
imputations, but more recently authors recommended using closer to twenty imputations
(Van Buuren, 2012). These data sets are then separately analyzed using the standard full
data techniques, the resulting quantities of interest from each data set are then combined
to obtain an overall estimate as well as its associated variance.

MI with EM Approaches that use iterative expectation maximization (EM) to create
complete data sets were originally developed by Dempster et al. (1977), but more
recently advanced by Schafer (1997) and Honaker and King (2010). These methods
model the joint distribution as a multivariate normal distribution. Honaker and King
(2010) provided an implementation of this method in R, known as Amelia, that com-
bines the EM approach with bootstrapping to derive solutions more quickly and runs
in parallel. In large data sets with significant amounts of missing data the package
can be computationally intensive, a trait that is a characteristic of EM algorithm as
the rate of convergence is proportional to the amount of missing information in the
model.

Conditional Approaches to Multiple Imputation An alternative technique is to model
each variable’s imputation via its conditional distribution based on all other variables
in the model. One such approach is Multiple Imputation via Chained Equations
(MICE) (Van Buuren, 2012). Imputations for fully conditional specification (FCS)
methods, such as MICE, in general work by first starting with an initial guess of Y mis

(e.g. the mean). This “imputed” variable is used as dependent variable (with missing
values restored) in a regression on all other variables. The regression estimates are
used to impute the missing observations, based on the patterns among the observed
values (including those imputed) among the variables included in the modeling exer-
cise. The estimates and parameters are then updated by cycling through the variables
and imputing each one given the most current estimate of the parameter and other
variables. The procedure stops when the chain has converged. A similar technique is
used in the MI package in R (Goodrich et al., 2012). Each variable is imputed based
on an “appropriate generalized linear model for each variable’s conditional distribu-
tion” (Kropko et al., 2014, 501). This is done for all variables and iterated until the
model converges.
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One of the main drawbacks of the FCS is that they do not necessarily define a valid
joint distribution and therefore can lead to pathologies in the convergence of the al-
gorithms (Li et al., 2012). Liu et al. (2013) showed that for valid semicompatible
models (i.e. models which are compatible when some of the parameters in the condi-
tional distributions are set to zero, and the joint model obtained from the compatible
conditionals contains the true joint probability distribution) the combined imputa-
tion estimator is consistent. Further, Zhu and Raghunathan (2015) extend these
results to more incompatible models at the expense of the type of missingness pat-
terns allowed (restricting the theoretical results to missingness patterns where each
individual is missing at most one variable). Beyond these theoretical developments,
one of the advantages of conditional model specification is that it allows each variable
to be modeled based on its specific distribution, which is specified by the researcher.
However, this can be “labor-intensive and challenging with even a moderate number
of variables” (Murray, 2013, 41). Moreover, coe�cients estimates in the conditional
models can su↵er significantly when the number of missing observations is large,
especially for categorical variables (Murray, 2013).

In the next section we describe an alternative approach, first introduced by Ho↵ (2007),
where imputation is done via MCMC methods utilizing Gaussian copulas. For the remain-
der of this article we the focus on a comparison of the copula based imputation method to
the MICE algorithm for FCS methods and Amelia for EM methods, based on their corre-
sponding R implementations (Van Buuren and Groothuis-Oudshoorn, 1999, Van Buuren
and Groothuis-Oudshoorn, 2011, Blackwell et al., 2015).

3 A copula approach to missing data imputation

One of the key issues with conditional approaches to imputation, such as MICE, is that
they do not necessarily specify a valid joint distribution. In turn this cannot guarantee
the proper behavior of confidence intervals and overall inference. A natural approach
to overcoming possibly incompatible conditional specification is by specifying the joint
distribution directly. Since this problem becomes increasingly complicated as the number of
covariates in the model increase, it is valuable to decouple the specification of the marginal
distribution of each covariate from the function that describes the joint behavior of all
covariates. One such function is called a Copula and Sklar’s (1959) theorem guarantees
that every joint distribution can be decomposed in this way:

Theorem 3.1 (Sklar’s Theorem). Let F be a n-dimensional joint distribution function
with marginals F

1

, . . . , Fn. Then there exists a copula C with uniform marginals such that

F (x
1

, . . . , xn) = C(F
1

(x
1

), . . . , Fn(xn))

Much work has been done studying the class of Gaussian copulas where the multivariate
dependence is defined by C via the multivariate normal distribution with a correlation
matrix R (Klaassen et al., 1997, Pitt et al., 2006, Chen et al., 2006, Ho↵, 2007). Of
particular interest is the setting where no parametric form is specified for the marginal
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distributions F

1

, . . . , Fn, making this a semiparametric approach. In this flexible setting,
estimation procedures are still equipped with theoretical guarantees for the parameters of
the copula model (Murray et al., 2013, Ho↵ et al., 2014). Since these parameters determine
the dependence structure, and so direct the imputation of the missing data, these theoretical
results are extremely appealing. The estimation approach we explore below was developed
by Ho↵ (2007) by extending the ideas of the rank likelihood Pettitt (1982) to the copula
setting.

Using the notation of Ho↵ (2007), data that is generated by a multivariate Gaussian

copula can be written as yij = F

�1

j (�(zij)) where z1, . . . , zn
iid⇠ N (0, R) with R a correlation

matrix and Fj the univariate cumulative distribution function (CDF) of variable j. The
rank likelihood (Pettitt, 1982), a type of marginal likelihood that bases inference on the
ranks of data rather than the full data, leverages the ordering of the observed values
y

1j, . . . , ynj of each variable to make inference about the parameter R without estimating
the CDFs F

1

, . . . , Fp.
A Bayesian approach to estimating R specifies an inverse Wishart prior for a covariance

matrix V such that R is its correlation matrix and a normal prior for the latent zij. Updates
are performed via a Gibbs sampler as full conditional distributions can be derived by
conditioning on the ranks of the data alone. Details of the algorithm for estimation are
available in Ho↵ (2007) and are implemented in an R package (Ho↵, 2010).

When values of yij are missing at random, imputation can be performed first on the
latent zij scale and then transformed to the observed scale using the empirical CDFs. As
this is a Bayesian procedure we produce a full posterior for the missing data. To make
our approach comparable to the standard conditional approaches we only employ a few
samples from this posterior and use those as multiply-imputed datasets. However, it is
natural to consider posterior predictive distributions of parameters of interest or other
posterior summaries on a case-by-case basis. For example, the conditional independence
graphs of Ho↵ (2007) succinctly summarize the relationships among many variables.

4 Comparing Amelia II, Copula, and MICE

In this section we compare copula based imputation (Ho↵, 2007) with some of the commonly
used Amelia II and MICE packages. We evaluate each technique based on a simulation
study as well as a real world data application from the social sciences, discussed in the next
section.

4.1 Evaluating Imputations

Multiple imputation procedures are specifically designed to yield valid statistical inference
(meaning, asymptotically unbiased with correct standard errors and coverage) for popu-
lation quantities of interest. The name itself suggests that each missing data point will
be imputed multiple times, taking on possibly di↵erent values in each completed data set.
As such, simulation based evaluation of the e�cacy of a multiple imputation procedure
based on deviation (squared, absolute, or otherwise) from the obscured data is likely to be
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misleading (Rubin, 1996, 2004). For example, consider the standard problem of minimizing
mean squared error – the best estimator in this case is the mean which is agnostic to other
information and will be lead to an underestimate of the standard errors. Since correct esti-
mation of the standard errors is critical for obtaining valid statistical inference any analysis
of the MI procedure must focus on studying its frequentist properties. Properties such as
empirical coverage, average bias and average interval length of the estimate of the scientific
estimand over repeat samples will be of cardinal interest.

Assessing MI: To assess the validity of a MI procedure through simulation we use the
following approach:

1. Define a full data quantity of interest, ✓. For example, this could be a set of regression
coe�cients.

2. Generate a complete data set and apply a pre-specified missing data mechanism to
remove some observations.

3. Use the MI procedure to create m completed data sets with the missing values re-
placed by imputed values.

4. Use each of them data sets to obtain an estimate of ✓ as well as its associated variance
and combine them using Rubin’s combining rules (Rubin, 2004) to obtain ✓̂ and a
95% confidence interval (CI).

5. Report the bias of ✓̂, the CI interval length and whether or not the CI covered the
true value (Van Buuren, 2012, Section 2.5.2).

Repeat Steps 2-5 S times to obtain the empirical coverage rate. By varying the full data
model and the missing data mechanism, in Step 2, we can control the two paths that
influence the e↵ectiveness of the MI procedures.

4.2 Simulation Study

In regression settings an outcome Y can depend on many explanatory variables X
1

, . . . , XJ

some of which can be costly to measure. As such, it is common that while the outcome
Y is measured for all variables, some instances of the design matrix X are missing. As
design elements are frequently collected prior to the outcome it is desirable to allow the
imputation model access only to the design entries. To facilitate this, the missingness
mechanism studied here does not allow for the missingness to depend on the outcome Y .

In this situation complete case (or listwise deletion) provides an unbiased estimate of
the regression coe�cients, however, the reduced sample size often leads to large standard
errors and confidence intervals. When the number of explanatory variables J is of moderate
size, the probability of having enough complete cases to estimate the regression coe�cients
is low. In this setting using a MI procedure is paramount and leads to a major reduction in
the standard errors however, this can induce a slight bias. White and Carlin (2010) show
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Correlation (⇢)
Missingness

Coe�cient (MC)

0.2 0.3
0.35 0.4
0.5 0.5
0.65 0.6

Table 1: Simulation Study configurations.

through a large simulation study that the increase in bias often time leads to a decreased
empirical coverage rate for both MAR and MNAR data sets.

For our simulation study we set J = 40, N = 1000, and consider Xj that include
both continuous and discrete variables in order to demonstrate the versatility of the copula
approach without specifying any of the marginal distributions. This is exactly the scenario
we described above; the probability of enough complete cases existing to estimate the
regression coe�cients is e↵ectively 0.

The distributions we consider for the elements of the design matrix are Gaussian,
Bernoulli, Poisson and ordinal. To make imputation feasible we require the variables to be
correlated. To generate correlated variables we first construct a matrix of correlated Gaus-
sian random variables and then transform the variables to have the appropriate marginals.
For example, to generate a pair of correlated Poisson random variables A and B with
mean � we construct (Z

1

, Z

2

) ⇠ N (0,⌃) where �

11

= �

22

= 1 and �

12

= �

21

= ⇢ and set
A = F

�1

Pois,4(FN (Z
1

)) and B = F

�1

Pois,4(FN (Z
2

)). The data generating process thus leads to
the following marginal distributions for the entries in X: for j = 1, . . . , 10

Xj ⇠ N (0, �2

j ) Xj+10

⇠ Bern(pj)

Xj+20

⇠ Pois(�j) Xj+30

⇠ ordinal(0, 1)

X = (X
1

, . . . , X

40

)

Y ⇠ N
 

40X

i=1

Xi, 1

!

where �j = 1+(j� 1)/9, �j = 0.2+2(j� 1)/90 and pj = 2+3(j� 1)/9. Both the amount
of missingness (MC) and correlation (⇢) between the di↵erent variables is varied according
to the specified values given in Table 1.

We consider two missing data mechanisms for X, one that produces MAR data sets
and one that produces MNAR data sets, details of which are given in Appendices A and B.
Even though the MI procedures we considered are only valid under the MAR assumption,
we believe it is important to consider how each method performs when this assumption is
violated.

4.3 Results

We performed 1,000 simulations under each of the possible combinations of the correla-
tion and missingness coe�cient, as detailed in Table 1, under both MAR and MNAR
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missing data mechanisms. For MICE we specified the correct marginal distributions (for
example ordered logit model for the ordinal variables) and for Amelia we used the ap-
propriate variable transformation. In contrast we did not need to specify any distribu-
tions/transformations for the copula method. Under each procedure we created 20 com-
pleted data sets which were used to estimate the regression coe�cients as well as their
variances and a 95% CI. Throughout the simulation, the Amelia II software crashed a
number of times, as detailed in Table D.1 in Appendix D. Thus our results for Amelia are
only on a subset of the 36,000 simulations. None of the simulations had enough complete
cases to estimate the regression coe�cients using listwise deletion.

From Figure 1 and 2 we see that the results from all three methods were comparable
with no clear procedure consistently outperforming the others. Overall the copula method
had an average coverage rate of 93.2% which was much higher than that of MICE, 87.1%,
and Amelia, 83%. Both the copula and MICE methods had overall bias of 0.17 while
Amelia was slightly more biased at 0.25.

The copula imputations were obtained using 10,000 iterations from Ho↵ (2010) package
whose convergence was checked on a subset of simulations. The lag-10 autocorrelation
for the thinned chained is less than 0.18 in absolute value for each of the elements of the
latent correlation matrix and the e↵ective sample size was always above 200 (97.6% of the
entries were above 500). The copula method had the lowest bias, highest coverage rate
and the longest interval length. Even though the semi-parametric estimation procedure
did not require specification of the marginals, any data transformations, or tuning it still
outperformed the other two procedures.

Since the MICE procedure is iterative, one must check that the model parameters fully
explore the parameter space. Unlike the Bayesian copula method, there are no explicit
convergence criteria one can track – however, we performed a visual check that revealed
no abnormalities and also ran each MICE chain for 20 iterations as recommended in Van
Buuren and Groothuis-Oudshoorn (2011). The MICE method performed almost as well
as the copula method, but had slightly lower coverage rate. It also had the lowest average
bias for the normal and Poisson variables. Again, however, these results are contingent on
specifying the correct conditional distribution which can often be challenging.

Amelia had the lowest coverage and highest bias both on average and in most scenarios
that we considered. It had the lowest average interval length of 1.23, which shows that it
was systematically underestimating the variance – leading to the low coverage rates.

Figure 1 shows that the absolute mean bias and the interval length increases as a
function of the proportion of missing values, under both missing data mechanisms. The
coverage also starts to worsen mainly due to the increased bias. One notable exception
was the good coverage properties of the copula approach for the regression parameter of
the ordinal variables, both Amelia and MICE here undercovered the true value. As this
marginal structure is very frequently encountered in social science applications. The copula
method also has the lowest bias and interval length for the binomial regression coe�cient
and yet still has the best coverage properties.

Surprisingly there seems to be little variation in the bias and the interval length as a
function of the correlation, as is shown in Figure 2.

Breaking the MAR assumption did not lead to drastically worse results. There was
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Figure 1: Simulation study results for the MAAR missing data mechanisms. The errorbars
we obtained using the 2.5% and 97.5% quantiles of the simulation distribution. The colors
represent good coverage (green – between 92.5% and 96.5%), over coverage (blue – above
96.5%) and under coverage (red – below 92.5%).
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96.5%) and under coverage (red – below 92.5%).
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a decrease of about 3% in the coverage of all three methods and a slight decrease in the
average bias. This shows that the methods are somewhat robust to violations of MAR
assumption when it is not too severe. Figures C.1 and C.2 in the Appendix C show the
results of the simulations when the MAR assumption is violated.
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5 Application Study

In this section, we provide comparison of the three imputation methods using an application
from political science. The application shows how copula methods can be used to impute
a large data set with a variety of variable types.

5.1 Inequality and Democratic Support

As we have elaborated above, imputation methods are still underused, especially in the
social sciences. There is, however, some visible progress. One example where scholars
have taken advantage of one of the imputation methods currently available is “Economic
Inequality and Democratic Support” by Krieckhaus et al. (2014) published in the Journal
of Politics. Krieckhaus et al. (2014) explore whether the support for democracy within
countries is a↵ected by the level of inequality. The authors combine country level variables
(such as inequality) with individual level survey data from 40 democracies around the world.
For multiple countries several survey waves are included, resulting in 57 country-years and
a total of 77,642 observations (Krieckhaus et al., 2014, 144). For this replication exercise we
replicate Model 1 in Table 1 in Krieckhaus et al. (2014). The dependent variable is a “13-
point additive index (ranging from 0 to 12) of democratic support”, which the authors treat
as a continuous variable (Krieckhaus et al., 2014, 144). The main independent variables of
interest are Inequality at the country level, and an ordinal income scale at the individual
level (ranging from 1 to 10). Additionally, the authors control for Age, Gender, Institutional
Confidence, Interest in Politics, Interpersonal Trust, Education, Prior Regime Evaluation,
and Leftist Ideology all drawn from the World Values Survey (World Values Survey, 2012).
As in the original article, all individual level variables are demeaned “using group-mean
centering” after the imputation (Krieckhaus et al., 2014, 145). The data are analyzed using
a random-coe�cients model.

Table 2: Share of Missingness in Variables of Interest

Democracy Support Inequality Income Age
19.9 1.8 12.9 0.2

Gender Institutional Confidence Interest in Politics Interpersonal Trust
0.1 11.7 2.5 3.7

Education Leftist Ideology Prior Regime Evaluation
3.9 18.5 21.3

Most importantly for the purpose of this study, the original data su↵ers from a relatively
high number of missing observations. Table 2 shows the share of missing observations for
variables included in the replication exercise. As one can see, a number of variables have
a large share of missing observations. If instead of multiple imputation, the authors would
have engaged in listwise deletion with respect to the missing data, the number of observation
in the regression model would have been approximately halved. Instead, Krieckhaus et al.
(2014) use Amelia II (Honaker et al., 2013) to multiple impute five data sets which they
analyze. Estimates are then combined using Rubin’s rule.
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This is an excellent setting for our comparison of multiple imputation techniques. The
number of missing observations is quite large and we have a number of di↵erent types
of variables, continuous, binary, as well as ordinal. We create 20 multiple imputed data
sets using each of the imputation techniques: Amelia II, MICE, and Copula. We then re-
estimate Model 1 in Table 1 in Krieckhaus et al. (2014, 147) and combine the estimation
results for each method’s multiple imputed data sets via Rubin’s rule.

For Amelia II we specify the type of each variable and then generate 20 imputed data
sets using the full original data. Similarly, we declare each variable’s type for MICE and
estimate the default model for each of these types. We use all variables except the one to
be imputed as independent variables in the chained equations. Again we create 20 multiple
imputed data sets and set the maximum number of iterations to 20. Lastly, we use our
preferred method, imputation via the semi-parametric Gaussian copula, to generate 20
imputed data sets. We run the MCMC chain for 2100 iterations and randomly draw 20
data sets from the posterior.

Figure 3 shows the coe�cient estimates and 95% confidence intervals for the replicated
model based on each of the imputation techniques, as well as when list-wise deletion is used.
First, for the majority of variables included in the regression model the results are relatively
similar across the di↵erent imputation techniques and even for the list-wise deletion. In
fact, for the two main variables of interest, inequality and income, the results based on
di↵erent imputation techniques are virtually the same.

On the other hand, there are several significant di↵erences. First, the e↵ect of gender is
essentially zero according to the models estimated on the copula imputed data. Based on
the data imputed using MICE or Amelia II females have higher ratings of democracy sat-
isfaction (though the confidence intervals just cover zero). According to the non-imputed
data, the e↵ect of gender is quite strong and precisely estimated. Similarly, based on the
data imputed with Copula method, the estimated associations of Education, Interest in
Politics, and Prior Regime Evaluation with the dependent variable of Democracy Satisfac-
tion are all weaker, compared to the other methods (and the non-imputed data), though
the confidence intervals overlap. On the other hand, the associations of Leftist Ideology and
Institutional Confidence with Democracy Satisfaction are estimated to be much stronger
based on the copula imputed data, compared to the other imputation methods. Here the
estimated coe�cients based on the di↵erent imputation techniques are quite di↵erent and
the confidence intervals do not overlap.

It is interesting to note, that, except for one variable (Interpersonal Trust), whenever
the estimated coe�cient for the copula imputed data di↵ers from the coe�cients based on
the other imputation methods, it is in the opposite direction of the di↵erence to the list-
wise deletion coe�cient. This is especially easy to see for the Gender and Leftist Ideology
variables, where the e↵ect is strongest (weakest) according to the model estimated on the
list-wise deleted data and weakest (strongest) for the copula based models.
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Figure 3: Coe�cient estimates and confidence intervals forModel 1 in Table 1 in Krieckhaus
et al. (2014) based on three imputation techniques and list-wise deletion
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6 Conclusion

What practical lessons can we learn about how to deal with missing data? Despite the
fact that missing data is ubiquitous, still, too few authors beyond the statistics community
make use of statistical methods (King et al., 2001, Honaker and King, 2010, Van Buuren
and Groothuis-Oudshoorn, 2011, Kropko et al., 2014) to deal with this problem. In this
article, we re-emphasize the importance of dealing with missing data and present a copula
based approach, developed by Ho↵ (2007), that is elegant and requires no pre-specification
of the data. With the rank based approach introduced by Ho↵ (2007), copulas can also be
used to impute binary, ordinal, and continuous variables and it generally performs as well
as or even better than either Amelia II or MICE.

Throughout our simulation and the application, the three imputation methods perform
relatively similarly, but with subtle di↵erences. MICE, however, requires specification of
conditional distributions while the copula method does not. Moreover, recent theoretical
results for MICE suggest that good performance heavily relies on being approximately
correct in the choice of conditionals (Li et al., 2012). Theoretical guarantees for good
behavior of copula methods are available. In particular, information bounds for rank-based
estimators are the same as the information bounds for estimators based on the full (scale
and rank) data (Ho↵ et al., 2014). Under MAR and MCAR we inherit all the properties
of the full data and by introducing structure to the imputation we are likely to have good
behavior even under MNAR.

One of the advantages of using the semiparametric copula approach to impute large
data sets is the relatively limited memory and computational requirements. As indicated
by Graham (2009) the disadvantages of EM approaches are especially large when imputing
databases with many variables or applications of “big data”. While it can be computa-
tionally less expensive, MICE su↵ers when the number of variables increases as the correct
choice of specification for each of the conditionals becomes increasingly unlikely. In con-
trast, the use of the semiparametric copula makes it possible to impute even large database
in a relative timely manner, with limited computing resources, and no pre-specification of
the data. Moreover, using the copula model to multiple impute missing values provides
some of the advantages (such as a proper posterior distribution of the data) but is less
burdensome on scholars than imputing values in a fully Bayesian approach (Erler et al.,
2016).

Finally, the copula approach is quite flexible and can be employed at di↵erent stages
of the analysis process. First, it can be used to generate a single estimate of the missing
data or the mean of a large number of draws, which is exactly what might be needed in
some situations. Second, per the recommendation of Rubin, it can be used to construct
multiple databases. These results can then be averaged, thereby accounting for a portion
of the uncertainty in the imputed values. While this is not based on E-M, it does allow one
to have a principled set of databases that are absent missing data. As with Amelia II,
the copula imputations can be analyzed separately and the results combined using either
mitools or Zelig (Imai et al., 2008) in R. Thus, the copula approach to missing data can
be explicitly integrated into the modeling and analysis of observational data in a simplistic,
organic fashion that is computationally e�cient.
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A Missing at Random

Since we are interested in evaluating the frequentest properties of the di↵erent MI proce-

dures we need to use a missing data mechanism that always produces MAR data, this is

known as the Missing Always at Random (MAAR) assumption (Mealli and Rubin, 2015).

Below we describe the MAAR missing data mechanism that we used.

1. Given a fully observed data set X randomly select four variables, one from each of

the four classes, that will be fully observed; without loss of generality relabel them

X

1

, X

11

, X

21

and X

31

.

2. Randomly select four variables from the remaining thirty six, one from each of the

four classes, that will have a 5-6% missingness; without loss of generality relabel them

X

2

, X

12

, X

22

and X

32

. The probability that the i

th observation for each variable is

missing is based on a logistic regression on the fully observed variables, X
1

, X

11

, X

21

and X

31

, adjusted so that the mean number of missing variables is between 5-6%. The

missingness indicators are then sampled from independent Bernoulli random variables

with the appropriate probabilities. Let X(1) = (X
1

, X

2

, X

11

, X

12

, X

21

, X

22

, X

31

, X

32

)

and X

(1)

cc

be the complete cases after removing the any rows that have missing values.

3. For the remaining thirty two variables the probability of the i

th observation missing

is based on a logistic regression on the fully observed X

(1)

cc

adjusted so that the

mean number of missing variables is equal to the Missingness Coe�cient (MC) (see

Table 1 for the range of values that we considered). The missingness indicators are

again sampled from independent Bernoulli random variables with the appropriate
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probabilities. If the ith row of X(1) has been removed in X

(1)

cc then that row is always

observed for the thirty two variables.

Since we have eight fully/almost fully observed variables the overall number of missing

values produced by this missingness mechanism is slightly lower than the values of MC

given in Table 1.

B Missing not at Random

Creating a MNAR data set is easier than a MAR data set. The below algorithms de-

scribes our missing always not at random (MANAR) mechanism which, with extremely

high probability, produces a MNAR data set.

1. Given a fully observed data set X randomly select four variables, one from each of

the four classes, that will be fully observed; without loss of generality relabel them

X

1

, X

11

, X

21

and X

31

.

2. Randomly select four variables from the remaining thirty six, one from each of the

four classes, that will have a small amount of missingness; without loss of generality

relabel them X

2

, X

12

, X

22

and X

32

. The probability that the ith observation is missing
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is given by,

P (R
2

= 1|X) = 1X2>0

pMC ,

P (R
12

= 1|X) = 1X12=0

pMC ,

P (R
22

= 1|X) = 1X22>3

pMC ,

P (R
32

= 1|X) = 1X32=3

pMC ,

where the value of pMC is given by the MC in Table 1.

3. For the remaining thirty two variables the probability of the i

th observation missing

is based on a logistic regression on X

(1) adjusted so that the mean number of missing

variables is equal to the MC (see Table 1). The missingness indicators are again sam-

pled from independent Bernoulli random variables with the appropriate probabilities.

In contrast to the MAAR mechanism if the i

th row of X(1) has missing values then

other variables in that row can still be missing.
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C Plots of MNAR Simulation Results
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Figure C.1: Simulation study results for the MANAR missing data mechanisms. The

errorbars we obtained using the 2.5% and 97.5% quantiles of the simulation distribution.

The colors represent good coverage (green – between 92.5% and 96.5%), over coverage (blue

– above 96.5%) and under coverage (red – below 92.5%).
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Figure C.2: Simulation study results for the MANAR missing data mechanisms. The

errorbars we obtained using the 2.5% and 97.5% quantiles of the simulation distribution.

The colors represent good coverage (green – between 92.5% and 96.5%), over coverage (blue

– above 96.5%) and under coverage (red – below 92.5%).
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D Number of Simulations for which Amelia crashed

Correlation

0.2 0.35 0.5 0.65

0.3 2 0 0 7

Share of 0.4 93 16 8 0

Missingness 0.5 285 138 37 13

0.6 485 305 159 72

Table D.1: The number of Amelia crashes out of the 1000 simulations under each of the

possible scenarios.
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