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A numerical soft-cube model is developed for calculating thermal

accommodation coefficients a and trapping fractions f t for the

interaction of gases incident upon solid surfaces. This model extends

previous work by introducing a semiempirical correction factor c which

allows the calculation of a and f t when the collision times are long 	 ,{

compared to the surface oscillator period, and by treating the processes

of trapping, evaporation, and detailed balancing more accurately. The

numerical method is designed to treat economically and with moderate

(±20%) accuracy the dependence of a and f t on finite and different

surface and gas temperatures for a large number of gas/surface combina-

tions. Comparison is made with experiments of rare gases on tungsten

and on alkalis, as well as one astrophysical case of H 2 on graphite. The

dependence of a on the soft-cube dimensionless parameters is presented

graphically.
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1. Introduction

Two parameters of particular interest to astrophysicists, as well

as surface scientists, are the thermal energy accommodation coefficient

a and the trapping fraction f t of a gas at temperature T  interact-

ing with a solid surface at temperature T s . These parameters are

defined in terms of the flux of energy transferred from the gas to the

surface Fe and the flux of gas molecules trapped on the surface Ft:

Fe = Fca(2kT
9
 - 2kTs ) ;	 (1)

Ft = Fcf t ;	 (2)

where

Fc = nvTA = n(kT9/21Tmg) 1/2	 (3)

is the flux of gas particles of number density n, thermal speed vT,

and mass mg incident on the surface. The 2kT 9
 in eq. (1) is the

average kinetic energy of a gas atom striking the surface.

Astrophysicists require values of a and f t for the common inter-

stellar gases H, H2 ,, 	 C, N, 0, CO, and H2O incident on the surfaces

of graphite, silicates and ices, which are thought to exist as tiny

"dust" grains in interstellar space. Interstellar conditions generally

produce a range of gas temperatures 10 K < T  < 10 4 K, surface tempera-

tures 5 K < Ts < 10 3 K, and gas densities 0.1 < n < 106 cm-3. Since

the radiation energy density is often equivalent to that of a blackbody

near 3 K, the interstellar medium is far from thermal equilibrium and

Ts is generally quite different from T g . Values of a are therefore

important in determining the gas-grain energy flow, which can dictate
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j	 the evolution of (and infrared emission from) interstellar clouds of gas

and dust. The trapping fraction f t is primarily important in inter-

stellar chemistry, since the major mechanism for producing H 2 is initiated

by trapping H atoms on grain surfaces; f t also provides a measure of the

depletion rate of heavier atoms and molecules from the interstellar gas

onto the solid surfaces. Astrophysicists, therefore, require a and ft

for a wide range of gas temperatures, solid temperatures, and mass ratios

u = mg/ms	(4)

`r	 where ms is the mass of a surface atom; however, their tolerance for

error is large (up to a factor two) because of inherent uncertainties

in the composition and roughness of the solid surface. The intent of

this work is then to provide a practical means of computing accommodation

coefficients and trapping fractions to the accuracy required by astro-

physicists. In this paper we develop an extension of the original

"soft-cube" model [1,2]. A subsequent paper will present results for

astrophysical cases of interest.

The "soft-cube" model treats the gas/surface repulsive interaction

as if the gas atom strikes a single surface atom which is attached by a

single spring to a fixed lattice. The component of momentum parallel to

the solid surface is assumed to be conserved for the gas atom during the

. interaction. Although this model ignores lattice and quantum mechanical

effects, experimental values of a can be fitted rather well over a wide

range of temperatures by fixing one dimensionless free parameter, assum-

ing that the effective natural frequency, we , of the surface oscillator,

the range, b, of the repulsive force between gas atom and surface atom, and
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the depth, D, of the attractive potential between surface and gas atom are

known [3]. The advantage of the soft-cube model, as opposed to more exact

lattice or quantum mechanical models, is that it is the simplest and most

computationally economical method to treat the effects of finite and dif-

ferent surface and gas temperatures on a and f t for a large number of

gas/surface combinations.

The extended soft-cube model presented here improves upon previous

work in several important respects. The original soft-cube model obtained

an analytic result for the energy transfer in a single collision by assum-

ing that the interaction can be treated as a short force pulse which peaks

at the distance of closest approach of the gas atom to the surface atom

[1]. These results are not valid when the collision time t c is long

compared with the surface oscillator period t e , since there are then

several (a number about equal to the ratio t c/te) force pulses during

the interaction. We have treated the collision by numerically integrating

the trajectories of incident gas atoms, thereby extending the validity

of the soft-cube model to regimes tc/te > 1. As tc/te increases, how-

ever, the lattice has an increasing effect on a and f t which may not be

ignored. These lattice effects may be included in the model approximately

by reducing the effective oscillation frequency of the surface atom. If

i
we write

we = cwD s
	 (5)

where wD is the bulk Debye frequency of the solid, the lattice effects

are then expressed by the correction factor c. From extensive compari-

sons with experimental data a semi-empirical relation is obtained for c
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in terms of tc/te that permits extension of the model to cases where

experimental data are unavailable.

Secondly, an important effect of finite T s is to permit "multiple

collisions" even when t c/te < 1. Physically, this can be pictured as

the gas atom striking z -f_ce atom which is oscillating into the sur-

face, subsequently following the surface atom until it slows and/or

reverses its motion, and finally making further collision(s) with the

same surface atom. The original soft-cube model assumed all such multiple

collisions lead to trapping [1]; by numerically integrating trajectories

we can treat such multiple collisions exactly. Detailed balancing cannot

be achieved unless multiple collisions are included realistically [4].

We have also treated the processes of trapping, evaporation and

detailed balancing in more detail than most previous work. Previous

assumptions generally dictated that an atom is trapped when its component

of energy normal to the surface becomes negative [1,2,4]. In effect,

this means that an atom hops along the surface until it dissipates its

component of energy parallel to the surface. 	 This overestimates the
a

trapping probability if the "true" criterion is that the total energy of

the incident atom must become negative [5,6].	 The further assumption

generally made is that a trapped atom eventually evaporates with	 2kTs
•,a

of energy, having completely thermalized with the surface. 	 Not only can

hopping atoms be ejected from the surface prior to thermalization, but

detailed balance dictates that even thermalized atoms evaporate with the

average incident energy of the trapped atoms, which is not	 2kTs 	when
i

ft < 1	 and	 Tg = Ts.
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Section 2.1 briefly describes the extended soft-cube model, discuss-

ing the important parameters, and describing the computation of energy

transfer in a single gas atom collision with a surface atom. The details

of the computation are presented in appendix A. Section 2.2 develops the

method used to handle trapping and evaporation. We distinguish two

extreme criteria for trapping which allow investigation of the importance

of hopping and surface roughness, and discuss the sensitivity of the

trapping probability to the initial phase of the surface atom. Section 2.3

describes the numerical procedures used to average over gas and surface

atom energy and surface atom initial phase. Details are presented in

appendices B and C. The results are plotted in section 3 versus the

experimental values. The quality of the extended soft-cube fits and the

values of the correction factor c are compared to previous work. We

find that the deviation of c from unity may be due to the effect of

long collision times tc /te >> 1, whereas previously it had been ascribed

to surface effects. For some of the experimental data, values of D

(the adsorption energy of a gas atom to the surface) are quite uncertain,

providing a second "free" parameter. We discuss the most likely value of

D in those cases using theoretical arguments as well as our best two-

parameter fits. Section 3 concludes with a discussion of the dependence

of a and ;f t on all the physical parameters involved, focusing especially

on the dependence of a with T s . It has been assumed that a is inde-

pendent of Ts , thereby facilitating theories of a which take Ts = 0.

This assumption is critically analyzed in several recent reviews [2,7,8].

We find that the relation between a and T s may in fact be quite complex,

6
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2. General descriptio.: of the model

2.1 Microscopic interaction
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particularly in the temperature range kT g < D < kTs . Finally, section 4

summarizes the significance of the results. 	 s

The soft -cube approximation model s the solid surface as in fig. 1

by an array of cubical atoms bound to the solid lattice by springs. An

incoming gas atom, incident at angle A, first encounters a collective

attraction to the surface through a potential of depth D changing its

incidence angle to A', and then encounters a repulsive potential due to

the individual surface atom with which it collides. The model assumes

that forces between the surface and the impinging atom act normal to the

surface, so that dynamically the problem reduces to one dimension.

The interaction potential between a gas atom and a surface atom is

assumed to depend exponentially on their separation .(cf. eq. (Al)). As

is shown in appendix A, only this exponential form of the potential and

its e-folding distance b are important; one need not specify the

absolute value of the potential at any point or the exact value of the

separation at which the gas atom reverses its motion.

The equations of motion for the two-atom system follow directly

from Newton's Laws. Specification of initial and final conditions for

the encounter completely determines the resulting energy transfer. The

details of the procedure are found in appendix A; we mention here the

most significant points.
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Prior to the beginning of the interaction, the motion of the surface

atom is taken to be that of an undisturbed harmonic oscillator:

Rs Ro sin (wet +	 (6)

where Rs is the displacement of the surface atom from its equilibrium

position; Ro is an amplitude related to the energy ES of the surface

atom, and w is the effective oscillation frequency of the atom. Thee

time t is taken to be zero at the beginning of the interaction, so that

the angle ^ describes the initial phase of the surface atom. Since the

arrival of gas atoms is timed randomly with respect to the motion of

surface atoms, ^ is treated as a random variable.

The initial conditions for the gas atom are its speed and distance

from the surface at the beginning of the encounter. The speed is of

course given in terms of the part of the atom's original thermal energy

in motion normal to the surface E augmented by the collective attrac-9

tive potential energy of the surface D (i.e., the adsorption energy per

atom).

The exact value of the initial atom-surface separation chosen is

unimportant, though it must satisfy a few simple criteria. The exponen-

tial form of the potential calls for a formally infinite initial dis-

tance. In practice, one requires that the value of the potential at the

initial point be small compared to gas atom energy, surface atom energy,

or energy transfer. The condition for ending the computation is simply

the return of the gas atom to this initial position.

As is shown in appendix A, the energy transfer, E g , in a collision

with given mass ratio U is determined by four parameters: the colli-

sion parameter K given by

8
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K = D/(2mee2b2)	 (7)

where b is the range of the Morse exponential repulsive potential; the

ratio of initial gas speed to maximum speed of the undisturbed surface

oscillator,

y	 ^ = vo/Rowe = [(D + Eg)/]'Es)1/2 ;	 (8)

the initial phase of the surface oscillator ^; and a parameter c equal

to the square of the ratio of the oscillator period to to the collision

time tc,

e = K(1 + Eg/D) = (t e/t c ) 2	(9)

Equation (9) effectively defines the collision time tc , which is approx-

imately the time for an incident atom, accelerated by D, to traverse a

distance b [9J. At fixed p the functional dependence of the energy

transfer ratio AEg/D on e, 9, and * is implicit via integration of

the equations of motion; the dependence of AEg/D on K is explicitly

given by eq. (A10).

2.2 Thermodynamic considerations

Several considerations arise when we look beyond the first collision

an atom makes the surface. In the soft-cube model, only the motion of

the gas atom perpendicular to the surface figures in an individual inter-

action; yet on average the gas atom has energy kT g in its motion

parallel to the surface. Should the gas atom emerge from its first

collision still with positive energy in the perpendicular direction it

will simply rebound, and its horizontal energy will be of no consequence
{

9
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(dashed line in fig. 1). On the other hand, should it lose its incident

normal energy in the first encounter, the gas atom will remain near the

surface "hopping" from surface atom to surface atom and undergoing

numerous subsequent energy transfers until it either escapes or is trapped

on the surface. Hopping is thus defined as the process of moving hori-

zontally across a surface with positive energy; trapping is defined as

the process of attaining negative energy in the attractive potential well

near the surface. A major thrust of this paper is to obtain information

on the fraction of incoming gas atoms trapped by the surface. To do so,

one ideally desires a detailed consideration of hopping, which we hope

to include in subsequent research. For the present, however, we dis-

tinguish two limiting cases.

In the smooth surface (hereafter, hopping) case we suppose that sub-

sequent hops slowly transfer initial horizontal energy to the surface.

Thus, any atom which loses its perpendicular energy in the first colli-

sion hops across the surface until it is trapped. This limiting case

ignores the possibility of escape after several hops. The opposite,

rough surface, or "nonhopping" case assumes that the first collision is

at an angle such that the rebounding atom emerges normal to the surface.

In this case an atom may be said to be trapped only if it loses its total

initial energy in the first collision.

Trapping is very sensitive to the phase of the surface atom at col-

lision. One might suppose that trapping should occur only for the least

energetic gas atoms; however, this view is completely incorrect when the

surface has a finite temperature. Not only is it possible for surpris-

ingly energetic atoms to be trapped at some phases ^, but trapping can

10
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tse for increasing surface temperature. This latter effect occurs

:ncreased surface temperature produces a larger range of phase ^

in which the relative velocities of the gas and surface atoms at collision

result in stopping and trapping the gas atom.

The dependence of the energy transfer in a single collision on phase

is crucial for understanding detailed balancing and demonstrates the

fallacy in attempting to define a single critical energy for trapping.

Suppose that the gas and surface are at equal temperature and that only

gas atoms with less than some critical energy are trapped. The

phase-averaged energy transfers as a function of gas energy are fairly

small but systematically biased toward gas to grain transfers, since the

inward, collective, attractive potential D makes the average gas atom

act as if it were a bit hotter than the surface. The net result of

energy transfer by nontrapped atoms in such a phase-averaged model is an

energy flow to the surface. Such a result contradicts the principle of

detailed balance.. What has gone wrong is that the actual energy transfers

between individual gas and surface atoms are much larger in magnitude

than their phase average. Some rather slow incoming gas atoms hit

outward-moving surface atoms and are not trapped, leaving the surface

with greatly increased energy; while some energetic atoms strike inward-

moving surface atoms and leave with greatly decreased energy, or are

trapped. Indeed, by accounting for the energetic atoms which are trapped

as well as the slow atoms which rebound, detailed balancing of the

nontrapped atoms can be achieved. As a check on this reasoning we

replaced the exponential interaction potential with hard sphere colli-

sions and found it possible to obtain results which exhibit detailed

11
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balancing to very good precision (1 part in 10 4 ) over a wide range of
o

parameters. Consequently, detailed balancing provides a check on the

accuracy of the numerical schemes used to work with the more complicated

exponential potential.

Evaporation of gas atoms from a surface, like hopping, is much too

intricate to handle in detail. Nevertheless, the detailed balancing

principle requires that ejection of trapped atoms from the surface

exactly equal the trapping of atoms from the gas, when gas and surface

temperatures are equal. By computing the average energy of atoms trapped

at equal gas and surface temperature, we obtain the average energy of

evaporated atoms at this surface temperature.

peratures are unequal, we assume that the ave

atoms depends only on the surface temperature

ture. Furthermore, we assume that the number

surface reaches equilibrium so that the rates

tion are equal.

When gas and surface tem-

rage energy of evaporating

and not on the gas tempera-

of atoms residing on the

of trapping and of evapora-

The mathematical details of the procedures outlined in this section

may be found in appendix B.

2.3 Numerical procedures

The principle difficulty in using the extended soft-cube model is

finding the appropriate compromise between numerical accuracy and compu-

tational expense. For a given gas/surface combination, the goal is the

ability to calculate a and f t efficiently over a wide range of T s and

Tg. Therefore, for fixed u we have chosen to calculate the trajectories

of gas atoms interacting with the surface for a three-dimensional grid

12
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(*, e, 4) as discussed in appendix A. These results can then be used to

interpolate the energy transfer AE g/D in any collision of a gas atom

with the surface (see eq. A10). Therefore, for any combination of T 

and Ts , a grid of energy transfers can be interpolated for the appro-

priate range of ^, E g , and Es which can then be integrated numerically

over a Maxwell-Boltzmann distribution to obtain a and f t . Furthermore,

for fixed T  and T s , a and f t can be computed for a wide variation in

the physical parameters D, b, and we using the same trajectory grid.

Herein lies the advantage over Monte Carlo schemes; once the (^, e, 4)

trajectory grid is calculated for fixed p, the accommodation coefficient

and trapping fraction can be obtained for large ranges of Tg , Ts , D. b,

and we with little additional computational expense.

Numerical errors are introduced both in the coarseness of the tra-

jectory grid from which we interpolate AE g/D as a function of i, Eg,

and Es and in the coarseness of the subsequent grid used for the inte-

gration over *, E g , and Es for given Tg and Ts . As discussed in

appendices B and C, we have chosen grid.sizes which each introduce

errors of about ±10%. Therefore, the numerical accuracy on the computa-

tions of a and f t is within ±20%.

3. Results

3.1, Choice of parameters

The basic equations of motion (A5a) and (A5b) and the initial condi-

tions (A9a-e) reveal that the average gas/surface energy transfer (AE 9)

for given T  and Ts (eq. A10) and hence the classical sticking and accom-

modation coefficients are determined by the physical parameters p, D,

13
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we, and b. In addition, the effective oscillator frequency w e appears

only in the combination w eb. The parameters p and D are often known,

whereas the appropriate web is somewhat more uncertain.

In order to match experiment, p and D are assumed to be fixed and

web = cwDb	 (11^

where c is an adjustable parameter and w  is the bulk Debye fre-

quency. The original soft-cube model found for rare gases on tungsten

that c = 1/2 and deduced that therefore the appropriate oscillator fre-

quency we was approximately one-half the bulk Debye frequency [3],

attributing this result to surface effects. The results presented in

section 3.2, which cover a larger number of cases, reveal that 0.3 < c < 1

and that c is a decreasing function of tc/te . Since lattice models

[7] for accommodation coefficients fit experiment with natural spring

frequencies given by w  and since we obtain we = W  when tc < te , it

appears that deviations of c from unity occur when collision times are

long, lattice effects become important, and the soft-cube model begins to

fail. The sense of the correction is such that smaller values of c

yield larger accommodation coefficients, as the longer collision times

allow more of the lattice atoms to participate in the energy transfer.

Any conclusions about the dependence of c on tc/t e are based on

the assumption that w  and b are known. The bulk Debye frequency is

generally known to 5% accuracy, an estimate obtained by comparing the

reported values of the last two decades [10-12]. However the range b

of the Morse exponential repulsive potential is more uncertain since it

is not measured directly but calculated from the combination rule and

14
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values of b given for gas atom-gas atom and surface atom-surface atom

interactions [13,14]. The accuracy of b for the gas atom-surface atom

interaction can only be crudely estimated to be approximately ±30% from

the span of determined values of b from 0.26 to 0.64 (see table 1).

The parameter D is taken to be the heat of adsorption. For those

cases where the heat of adsorption is unknown, we take values of D from

the literature. These values are calculated from crude extrapolations of

known parameters and are often uncertain to factors of 2 to 4. For exam-

ple, in Van der Waal theory of induced dipole-dipole interactions, the

gas/surface potential well depth D gs is proportional to the polariza-

bility of the gas atom, or equivalently, to the square root of the poten-

tial well depth c 
9 

for the gas atom-gas atom interaction. Values of

c
gg	 He-He	 Ne-Ne

for rare gases [15] include e	 = 8 K e	 = 30 K,

eAr-^,r = 120 K, e Kr-Kr =	 Xe-Xe
170 K, and e	 = 220 K. (When numerically

specifying egg and D, we shall use the more intuitive temperature units

rather than energy units.) Taking DAr-W = 1000 K for argon on tungsten

from the experimental heat of adsorption [16], we obtain from Van der Waal

theory DHe-W = 260 K, 
DNe-W 

500 K, DKr-W - 1200 K, and D
Xe-W '21 

1350 K.

The latter two conflict with the experimental heats of adsorption:

D	 =2250 K and D	 =4500 K [16]. Extrapolating D 	 and D
Kr-W 	 Xe-W	 He-W	 Ne-W

from 
DAr-W 

by assuming D proportional to e gg obtains DHe-W - 60 K

and DNe-W = 200 K, values more traditionally accepted in the literature

• [17]. On the other hand, DNe-W - 350 K and DIle-W - 100 K have been

obtained as the values which, substituted into soft-cube theory, gives

the best fit to measured accommodation coefficients [2,3]. Therefore,

estimates for DHe-W 
and DNe-W range from 60 K to 260 K and 200 K to

15
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500 K, respectively. Likewise, the potential well-depths for rare gases

on the alkali metals are quite uncertain. Values for He on K range

from DHe-K - 16 K to 60 K [17,18]. Fortunately, the results are more

sensitive to the value of web than the parameter D, and our approach

is to present results for a range of D which is representative of the

values quoted in the literature. For the astrophysical cases in which

we are most interested, the heats of adsorption are known so that D is

specified.

Table 1 presents the values of physical parameters 6D = bwD/k, b,

u and D which were used in calculating all reliably measured accommoda-

tion coefficients for various gas/surface combinations. In the following

section which discusses fits to experiment, we shall use the more familiar
Y

6D instead of wD.

3.2 Comparison with experiment

The measured values of a for rare gases on tungsten are presently

the most reliable because of the low level of impurities on the tungsten

surface prior to the experiment [7]. For this reason and because values

of b, 6D , and D are relatively well established for most of the gas/

surface combinations we make a careful and detailed comparison of the

extended soft-cube theory to experiment for these cases. However, in

comparing the results for rare gases on alkalis with experiment, a much

coarser (and less expensive) numerical grid is used which reduces the

numerical accuracy from ±20% to roughly ±40%. The coarser grid is justi-

fied by the increased uncertainties both in the experimental results and

in the values of the parameters b and D.
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Experimental values for the equilibrium accommodation coefficients

for noble gases striking tungsten surfaces are presented in figs. 2 to 4

together with our computed fits. For these fits we assumed the "conven-

tional" values of D discussed above and varied c9 Db. For each com-

puted curve, we calculated a weighted sum of squared deviations from the

experimental values. The data fall into three groups: measurements

between 77 . 4 K and 303 K using the low-pressure method and groups both

at lower and higher temperatures using the temperature-jump method. As

the goal was to avoid gross disagreement with experiment in any of the

three temperature ranges, each group was weighted equally. Thus in each

group of data available for a given atomic species, we calculated an

average squared difference between the computed and experimental accommo-

dation coefficients and then summed these averages to obtain a final

figure of merit for the value of c9 Db used. The "best" fit then is

that which minimizes this figure of merit.

Figure 2 presents experimental results for Ne/W and four calcu-

lated fits: two values of 
DNe-W 

for both the hopping and nonhopping

cases. The hopping case with DNe-W = 
240 K fits the intermediate range,

though with noticeable deviations in the low temperature range. The

hopping case with D
Ne-W = 

400 K fits reasonably well in all three

temperature ranges, though the very rapid rise of the experimental data

at low temperatures seems to elude the soft-cube model. The best fits

for the nonhopping cases with DNe-W = 240 K and 400 K are also pre-

sented and do not simulate the overall behavior of a. Attempts to

match nonhopping cases to the other rare gases on tungsten also provided

similarly poorer fits than the hopping cases. Apparently, the
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hopping criterion used is closer to the physical situation and hopping

must be included in modeling accommodation coefficients and trapping

fractions. In all models presented henceforth the hopping case will be

used exclusively.

Figure 3 presents the results for helium ( 4He) striking tungsten.

The computed curve for DHe-W = 60 K and c6 Db = 60 KA reproduces the

minimum in the experimental data near T g = Ts = 50 K remarkably well,

though the comparison in the middle range of temperatures is slightly

outside our 20% estimated numerical error. All of the computed curves

exhibit a lower slope at high temperatures than does the experimental

data. As the interaction at high temperature should approach the limit

given by a free particle interaction, which gives a constant accommoda-

tion coefficient, one might perhaps be skeptical of the experimental

result at 600 K. The very sharp minimum at TS = 50 K may also be an

artifact of fitting temperature jump measurements (T s < 40 K) with low-

pressure measurements (T s > 77 K). If one optimizes the fit to the data

from the low-pressure method and ignores the other temperature ranges,

it is possible to improve the fit greatly in the middle range. The best

fit is then for DHe-W = 100 K and ce Db = 73 KA.

Also plotted in fig. 3 is a computed curve for 3He striking tungsten

using the same parameters as the best overall fits for 4He. The arrows

give experimental values for the difference between 3He and 4He. The

results are quite consistent in the intermediate temperature range but

diverge substantially at Ts = 50 K for DHe W = 60 K and 0 Db = 60 KA.

Again DHe-W = 100 K and c6 Db = 73 KA provides the better fit to the

relative accommodation coefficients for 3He and 4He on tungsten.
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Results for Ar, Kr, and Xe are presented in fig. 4. The same general
(

E
behavior appears as for the lighter gases. Our results fall roughly

within 20% of experimental values and generally do not reproduce the steep 	 ti

€

	

	 slope of the experimental data at low temperatures. Xenon apparently is

an exception to this rule.

Table 2 presents a comparison of some computed nonequilibrium accom-

modation coefficients with experiments. Here the parameter values are

those from the previous fits to the equilibrium data. In general, the

computed values are somewhat higher than the experimental results (typi-

cally, though, by an amount less than the sum of variation in the experi-

mental values and the 20% computational uncertainty). One could improve

the fit by varying parameter values slightly; we are mainly interested,

however, in the dependence on Ts . The agreement for nonequilibrium data

at three times higher surface temperatures than for the equilibrium data

further substantiates the utility of the model.

The effect of varying D provides modest improvement for He and Ne

on tungsten if we increase D from the "canonical" values of

DHe-W = 60 K and DNe-W - 240 K to DHe-W 100 K and DNe-W - 400 K,

respectively. However, no improvement in the quality of'the fit can be

made by changing D for the other rare gases on tungsten. Since DHe-W

and DNe-W 
are not experimentally established and quite uncertain, we

suggest that the accommodation results imply higher values of D for

these two cases than the "canonical" ones.

Comparison of these extended soft-cube results to the results of the

original soft-cube model [1,3] shows very similar behavior; a good fit

to experiment in the middle temperature range, some trouble fitting the
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dip in experimental values for helium near 50 K, and inability to repro-

duce the steep slope of the experimental data at low temperatures. Both

models fit xenon rather well. These features then seem to be inherent in

the soft-cube model and not due, for example, to numerical error in our

calculations.

Although the qualitative behavior of all soft-cube models is identi-

cal, the extended soft-cube model requires significantly lower values for

the combination c6Db than previous soft-cube models [3). Since the

ratio of collision time to surface oscillator period for much of the tem-

perature and parameter range in the experimental data and in the astro-

physical case of interest is near the limit of validity of previous work

(tc/te = 3), we believe the parameter choices from the exact numerical

{	 calculation are more reliable for use in calculating the dependence of

c on t /tc e

We have also applied the extended soft-cube model to the case of

noble gases incident on various alkali metal surfaces, in order to

understand further the dependence of effective surface frequency on the

parameter tc/te . Unfortunately, the values of surface potentials D

are not nearly so well known as for the tungsten surface, and experiments

have not been performed over so wide a range of temperatures as for

tungsten. Furthermore, the experimental results (reviewed recently in

the literature [7]) are substantially more uncertain than those we have

used for tungsten. Given these uncertainties, the numerical grid

fineness was correspondingly relaxed, increasing the numerical errors to

±40%. The resulting values of a from the extended soft-cube model are

seen in table 3 to fit experimental results within the numerical error.
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The uncertainty in the choice of effective oscillator frequency (or

equivalently the correction factor c) for these cases arises chiefly
ti

from uncertainty in D rather than from the numerical errors.

3.3. Determination of the correction factor c

The correction factor c attempts to compensate for all the inaccu-

racies of the extended soft-cube model. The most important inaccuracies

are the following: ( i) the surface oscillator frequency may in fact be

smaller than the bulk Debye frequency [1]; (ii) the lattice effects are

important when tc/te > 1; and (iii) the lattice effects are important

when u > 1.

Figures 5a and 5b present the dependence of c on tc/te . For each

combination of gas and surface species we calculate c and its probable

error from the value of c6Db corresponding to the best fit to experi-

ment and from the range of values for b and 6 D found in the literature.

Similarly we compute central values and ranges for the ratio t c/te using

eq. (9). Since the quantity Eg , the thermal energy of impinging gas

atoms, appears in the formula for t c / t e , we present graphs for two

values of Eg . The results show substantial scatter about what is,

nevertheless, a reasonably well-defined relation. The correction factor

C is of order unity for tc/te < 1 and c monotonically decreases

with increasing collision time. The trend levels off for very large tc

so that the relatively large uncertainties in tc / te for noble gases ou

tungsten do not noticeably affect the results. That c = 1 for t c/te < 1

indicates that the surface oscillator frequency can be taken to be the Debye

frequency in this case and that the effective oscillator frequency (or c6Db
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in the soft-cube model drops because of lattice effects when t c/te > 1.

The dependence on gas energy is weak and makes little change in the form

of the relation.

Figure 5c presents a similar plot of correction factor versus mass

ratio u. No correlation is seen for p < 0.8. Furthermore, in attempt-

ing to match experiment for cases such as the heavier rare gases on

alkalis where p>"1, we find the extended soft-cube model cannot be made

to match experiment for any value of c, in the sense that the experimen-

tal result is always higher than the theoretical value. Changing the

effective oscillator frequency cannot imitate the effect of the lattice

when a very massive gas atom strikes a light surface atom. Therefore,

we assume that the correction factor c depends only on t c/te but is

valid only for N < 0.8; and that the effective oscillator frequency is

W  when tc/te < 1.

3.4. Application of the extended soft-cube model: an astrophysical case

As an interesting example of how the extended soft-cube model is to

be used, consider the gas/surface combination: H 2/graphite. Here some

experimental data are available for accommodation coefficients [19]; the 	 1

values of D = 525 K [9,20] and 0  = 420 K [10] are known; and

b = 0.3,& has been estimated [21]. We obtain a value t c/te = 1.24	 ?

from equation (9) and therefore a value c = 0.92 from fig. 5.

Figure 6 presents the resulting values for the accommodation coeffi-

cient and trapping fraction computed from the extended soft-cube model.	
a

Since c is determined from t c/te , the theory has no adjustable param-

eters and still fits the experimental points quite well. The worst
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match is at 77 K, where the theoretical point lies 30% below the experi-

mental value.

Although trapping fractions are difficult to measure experimentally,

and few reliable results are available, the trapping fraction f t for

H2 on graphite is plotted as well because it is of astrophysical inter-

est, and because it illustrates a common relationship between a and ft.

At low temperatures, f t = 1 and the accommodation coefficient a = 1,

as the gas atoms are trapped and re-evaporated with complete accommoda-

tion. At high temperatures f t = 0, but the accommodation coefficient

a = 2u/(1 + u)2 as partial accommodation is achieved by the richochet-

ing gas atoms depositing the free-particle energy transfer to the surface

atoms.

3.5. Investigation of parameter space

The dependence of a on the independent parameters of the model is

complicated by the effects of trapping and the transition from free-

particle interaction when t c/te < 1 to lattice interaction when

c ,tte > 1. The independent parameters enter the calculations as the mass

ratio p, the combination K defined in equation (7), and the ratios

Tg/D and Ts/D.

From the p dependence of the energy transfer in the collision of

two free particles AEg a p/(1 + u) 2 , the accommodation coefficients are

expected to increase monotonically with p for u < 1. K is propor-

tional, approximately, to (t e/tc) 2 ; and, therefore, larger K generally

means larger a, since more energy is transferred in a short collision

time than in a long, more adiabatic one. Generally, a increases as Tg/D
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decreases, since trapping becomes more important for T g/D < 1. The

dependence of a on Ts/D is not intuitively obvious, although some

authors have argued that a is independent of T s /D, particularly when

trapping is not important and Ts > T  [7,8,22,23].

Figure 7 gives the dependence of a on mass ratio p. The main

feature is a monotonic increase of a with increasing mass ratio. Near

p = 0.8 however, the curves apparently reach a peak. Such behavior is

reminiscent of the result for free-particle collisions, which peaks at

p = 1, and is a symptom of building the model on single-particle encoun-

ters while neglecting lattice effects. We restrict the extended soft-

cube model to values u < 0.8 in order to avoid major lattice effects

caused by high p.

Figure 8 gives the dependence of a on K. Smaller values of K

correspond to larger tc/te or, more crudely, to collisions in which the

spring is relatively more important. Smaller K is also seen in fig. 8

to correspond in general to smaller values of the accommodation coeffi-

cient. In the limit K = 0 (we ^) the incoming particle strikes a

surface atom rigidly attached to the solid. The system is conservative,

and no energy transfer occurs.

The dependence of a on K can also be seen in fig. 7, where the

importance of trapping is illustrated. The above argument suggests that

a free-particle, hard-sphere limit (t c = 0; K = -) might provide an upper

limit to d. Trapping, however, drives a toward 1, and it is the

dominant process for the large values of K in the temperature range

represented. Notice also that curves for fixed K but increasing g&.,

temperature in general lie lower in fig. 8, an effect caused by the 	 r
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a

decrease in the trapping fraction as the gas temperature increases. The

curves for K = 0.1 and u == 0.11, show an exception to this rule at

Tg/D 1. Here trapping is no longer important and the decrease in

tc /t e (see eq. (9)) at the higher temperature leads to greater energy

transfer in the richocheting gas atoms.

Further examples of the complexity of the behavior of a occur in

figs. 9a and b, which display two cases of the variation of a with

surface temperature. For most cases, the dependence is not large and it

is customary in the literature [2,7,8] to take this as the general case.

However, substantial variation of a with T s occurs in some limiting

cases. In particular, a increases with increasing surface temperature

for p < 0.1, K < 0.3, and T g/D < 1; a decreases with increasing surface

temperature for p > 0.1, K > 0.3, and T g/D < 1. The primary cause of

this behavior is the variation of the trapping fraction, which may increase

or decrease with surface temperature depending on the match of oscillator

velocities to gas-atom velocities. The dependence of a on T s is

less pronounced or absent when T
9
 /D > 1.0, when trapping plays a less

significant role in determining a. This has been observed by other

authors [22,23].

4. Discussion and conclusion

The goal of this work has been to construct a theoretical model of

the gas/surface interaction which will provide approximate trapping

fractions and thermal accommodation coefficients for gas/surface combina-

tions which have not been studied experimentally. In particular, the

astrophysical combinations of hydrogen and helium gases incident upon
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graphite, silicate, or ice surfaces will be the subject of a future

paper which will apply the basic method described here. A primary require-

ment of the model is the ability to treat finite surface temperature and

"nonequilibrium" (Tg 0 Ts) effects.

To this end we have extended the analysis of the original, soft-cube

model [1], a model designed to handle surface temperature effects. The

basic features of a soft-cube model are the following: (i) the surface

atoms can be represented as independent one-dimensional oscillators con-

nected by springs to an infinite mass substrate; (ii) a gas atom is

accelerated by the long-range RLLraction adsorption potential D and

interacts with a single-surface atop^ via a "soft" exponential repulsive

potential; (iii) the surface atom is "cubical" in the sense that the

tangential component of the gas atom is conserved in the interaction;

and (iv) the surface atoms have an equilibrium ,energy distribution at the

temperature of the solid. The fundamental assumptions of soft-cube

models and the particular way they are treated in the extended soft-cube

model include:

(1) The lattice can be ignored. This assumption strictly holds for

tc/te << 1 and u << 1. In the extended soft-cube model a

correction factor c is applied to approximate the contribu-

tion of the lattice when t c/te > 1. The dependence of c on

tc/te in the range tc/te < 5, is found empirically by match-

ing the results of the theory to experimental data. Further-

more, the theory reproduces observed accommodation coefficients

for u < 0.8 but fails for larger p as lattice effects
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again begin to dominate. It proves impossible to construct a

similar correction factor for high p cases.

(2) The effect of surface roughness is small. Structural scatter-

ing becomes important when T g/D > 10 [24]. Therefore, this

assumption restricts the range of validity of a soft -cube model

to T  < 500 K for He on W, for example.

(3) Quantum mechanical effects are small. The analysis strictly

holds for T  > 6  and for de Broglie wavelengths of the

incident atoms small compared to the lattice spacing

(Eg/k > 30 K for He). Nevertheless, classical models provide

surprisingly accurate fits to experiment when these conditions

are violated [7].

(4) After the initial collision with a single-surface oscillator,

the interaction of the gas atom with the surface can be approx-

imated in a simple yet realistic manner. This interaction

includes striking a second surface oscillator during the colli-

sion time, hopping across the surface, and trapping with conse-

quent evaporation. The first effect is probably negligible [1].
P

The extended soft-cube model proposes two extreme criteria for

hopping and trapping; either an atom is trapped if its compo-

nent of energy normal to the surface becomes negative after

the initial collision (hopping implied) or an atom is trapped

only if its total energy becomes negative after the initial

collision (no hopping). The hopping case allows a better match

to experiment. Detailed balancing is used as a tool to esti-

mate the average energy of an atom evaporating from a surface
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at temperature Ts ; it is taken to be equal to the average

energy of an incident atom which is trapped when T g = Ts . It

is important to note that this average energy is not 2kTs

when ft < 1, as has often been assumed.

The extended soft-cube model yields dependences of a on T g and

Ts which closely match experiment. Like the earlier soft-cube models

[2], however, the model slopes are somewhat more positive than the

experimental results. We obtain theoretical values within 25% of the

experimental values over the entire temperature range for rare gases on

W. In turn, the best theoretical fits for the various gas/surface com-

binations, including rare gases on alkalis, provide an empirical correc-

tion factor for lattice effects when t c/te > 1. Given the dependence

of the correction factor c on t c/te , the model has no free parameters

and predicts a and f t given mg , ms , Tg , Ts , b, D, and wD (or 6D).

To check the goal of this work, namely to provide approximate values of

a and ft for astrophysical combinations, we have applied the extended

soft-cube model to H2 gas incident upon graphite, the only astrophysical

case with experimental results available. Although b is not well

determined, the previously estimated value of b [21] for this combination

results in a theoretical fit to experiment within -30%. This is well

within the desired astrophysical accuracy of a factor of two. A future

paper will apply the extended soft-cube model by calculating a and ft

for other astrophysical gas/surface combinations.
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Appendix A

Equations of motion for the microscopic interaction

We take the interaction potential U between a gas atom and surface

atom to be of the form

U = Uo exp (-p /b)	 (Al)

The distance p is the separation of the two atoms as shown in fig. 10;

b is the e-folding scale of the potential. We shall show that the

value of Uo need not be specified to solve for the energy transfer.

from Newton's Laws, we obtain

msRs = -mswe2Rs - (Uo/b)exp (-p /b) ,	 (A2)

and

mg (Rs + p) _ (Uo /b)exp(-p/b)	 (A3)

where Rs is the displacement of the surface atom from its equilibrium

position, and we is the effective oscillator frequency.

One may put the equations into a more convenient form with the

following abbreviations:

K = D/(2m
9
we2b 2 ) ,	 (A4a)

n = Rs /b ,	 (A4b)

X = p/b + kn(D/2KU0 )	 (A4c)

and

T = wet	 (A4d)

, 1
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One obtains

n	 -n - uex

J

(A5a)

and

X" = n + ( 1 + u)e
-X

 P	 (A5b)

where ' stands for the derivative with respect to T. The parameter

n is the dimensionless position of the surface atom while X is a

dimensionless measure of the distance between surface atom and gas atom.

Equations (A5a) and (A5b) may be solved numerically, once the

initial conditions are specified. Thus, we take the motion of the sur-

face atom before the beginning of the collision to be that of an undis-

turbed harmonic oscillator with position

Rs = Ro sin(T +	 (A6a)

and velocity

is = weRo cos(T +)	 (A6b)

Here the phase * is a random variable giving the phase of oscillation

when a collision begins. The initial speed of the gas atom is given in

terms of its initial energy in motion normal to the surface, augmented

by the collective potential D:

vo = [2(D + Eg) /mg ] 1/2	 (A7)

It proves convenient at this point to introduce the abbreviations

^ = vo/RoWe = [(D + Eg)/uES ] 112	(A8a)

Y = Es /D ;	 (A8b)
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S = E9
 /D	 (A8c)

,

	

	 a

and
u

e = K(1 + s)	 (A8d)

In terms of these quantities, the initial conditions read:
r

t

ni = 2( e 312 /)sin	 (A9a)

ni = 2(e' /2 /)cos	 (A9b)

and

Xi = -2(e1/2/^)(C + cos ^) 	 (A9c)

There is no exact criterion for choosing Xi . We shall require that

the initial value of -he interaction potential be much less than either

the initial gas or grain energy,

exp(-Xi) << min(2e, 2e /p^ 2 )	 (A9d)

Furthermore, we choose Xi so that the initial distance between the gas

atom and the mean surface is independent of ^. This allows a particu-

larly simple averaging procedure over ^ since 	 will then be uniformly

distributed. Specifically,

Xi = 4 + 2( e l/2 /g) + max[O, -9,n(2e), -kn(2e/)1^2)] - n i	 (A9e)

The criterion for ending a numerical integration may simply betaken

as the final value of X being equal to the initial value. One then 	 M

obtains the desired energy transfer AE  between gas and surface atoms

as the difference between final and initial energies of either gas or

surface atom:
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AEg/D = -( 1 + S) + (nf + Xf)2 AK

(A10)
= Y - (n f2 + n f 2 ) /4pK

We note that the differential eqs. (A5), the initial conditions (A9), and

energy transfer (A10) in their final forms make no reference to the

quantity Uo , which describes the maximum interaction potential. As

claimed above, the results depend only on the exponential form and

e-folding distance b of the potential.

Comparison of eq. (A10) with eqs. (A8d-A9e) reveals that the energy

transfer AEg/D for fixed u is set by the four parameters C. ^,
r

and K. Furthermore, inspection of the eqs. of motion (A5a and b) along

with the initial conditions (A9a, b, c, and e) shows that the integration

of the trajectories for fixed u is set by the three parameters e,

and	 Therefore, for fixed u a complete three-dimensional grid

(e,	 of trajectories provides (via eq. (A10)) the energy transfer

for any collision between a gas atom and a surface. In practice, a

finite grid is used and interpolation is made to estimate the trajec-

tories for any (e,	 combination. We chose the coarseness of the

grid so that interpolation errors lead to errors of less than

10% in ft and a. Typically, the grid sizes were 24 x 24 x 20, and

typical ranges of a and ^ were 0.05 < e < 10 and 1 < 4 < 104.
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Appendix B

Definitions of a and f t in terms of parameter distribution functions

We assume that the velocity distribution of gas atoms is given by

the Maxwell-Boltzmann distribution. The flux of gas atoms from solid

angle dR and velocity interval v to v + dv above the attractive

surface potential is

r(6,v)dR dv = n(m9/27rkT9)
3/2 cos 6 dQ v 3 exp(-mgv2 /2kTg)dv	 (B1)

where 6 is the angle of incidence. All properties of the surface are

assumed to be statistically isotropic in azimuthal angle about the normal.

We shall require the transformation of eq. (B1) to a distribution in

terms of the variables 0', the polar angle at collision, and w, the

"total gas energy scaled according to gas temperature:

W = mgv 2 /2kT9	(B2)

Since the effect of the attractive potential is to leave the parallel

energy of the atom unchanged while adding D to its normal energy, and

the sines of angles 0 and 0' are given by the ratio of parallel velocity

to normal velocity, we may obtain:

cos 0 = {cos 2 6'[1 + (WO 9) -1 ] - (wog ) -1 } i/2 ,	 (B3)

where Og = kT9/D is a scaled gas temperature and O s is the correspond-

ing scaled surface temperature. We obtain the desired gas atom distri-

bution function by substitution in eq. (B1) and multiplication by the

Jacobian of the transformation:

r(w,0')dw d(cos 0') _ -(nvt/209)(1 + wo9)e w dw cos 0' d(cos 6') 	 (B4)
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Note that 0' is limited to the range

0 -< 0' <_ cos
-1 (1 

+ wOg) -1/2 = 0M (w)
	

(B5)

In the hopping case, defined in the text, the interesting parameter

is energy in normal motion E 1 rather than total energy E g. Thus, we

require the distribution in terms of the variable

u = El/kTg = E  cos2 0/kTg = w cos2 0 = cos2 0'(w + 091) - 091 	 (B6)

a	 Equation (B4) becomes
x•

r(u,0')du d(sec 2 0') _ (nvt /408)(1 + u0g)d(sec 2 0')e (tl'+Og1)sec20'+Og1

(B7)
Y

with subsidiary condition

0 < 0' < r/2	 (B8)

The only feature of the hopping case which is not manifestly inde-

pendent of the incidence angle is the energy transferred to the surface

by atoms which are trapped. Each trapped atom is assumed to have the

average transverse energy kT g. Thus, we need only consider the distri-

bution of atomic impacts averaged over angle and depending only on u:

9t/2
r(u)du = j	 r(u,0')du d(sec 2 0 1 ) = (nvt /4)e u du	 (B9)

0'=0

1 +

i ^ 1

s

l

K A

fi	 •

Y ,-

For the distribution function of the energy of the surface atom we

take the Boltzmann distribution

P(y)dy = e y dy	 (B10)

where

y = Es /kTs	(B11)
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These distributions for gas atoms (eq. (B4) for nonhopping and

eq. (B9) for hopping) along with the surface atom distribution (B10) can

be combined with the energy transfers and trapping criteria for one-

dimensional collisions to define ft and a.

The accommodation coefficient is defined as the ratio between the

actual mean energy transfer per collision and that which would occur if

each incoming atom were to be trapped, thermalized to the surface tem-

perature, and then evaporated;

a = (AE 9 )/2k(Ts - Tg) = 1/2 (AE g/D)/(Os - 09)	 (B12)

where AE  is the actual mean energy transfer; 2kT 9
 is the mean energy

of gas atoms at temperature T  striking a surface. Note that if every

atom were to be trapped, then in equilibrium the average energy of

evaporators must equal that of those impinging; therefore 2kTs repre-

sents the mean energy of evaporators when all atoms are trapped.

There are three contributions to the average energy transfer:

(i) energy transferred by rebounding atoms; (ii) energy transferred by

those trapped; and (iii) energy added to the gas by trapped atoms

evaporating.

OEg/D) _ (SE) = (SE) r - (SE(Tg)) t + (SE(Ts)) t	(B13)

where the subscripts r and t refer to rebounders and trapped atoms

respectively.

Explicit expressions for the average of a function g over the

parameter space are
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0 gm (w)	 r
(g) =	 g d* e-v dv(w + Og^')e w dw d(-cos t 6')

w=o 8' =o 	 v=o ^=-^r	
(B14

!	 for the nonhopping case, and

r
(g) =	 g 

2L 
e	 ev dv u du	 (B14

s f "0 f"O
u=o v=o	 =-7r

r	 for the hopping case.

In order to perform the aver&ging processes (B14a) and (B14b) on

t
three contributions listed in eq. (B13), we define several quantities

'r
words whose quantitative calculation is performed numerically:

pt - probability of an atom being trapped by the surface after collision;

SEt = scaled (:D) energy transfer from gas to surface of a trapped atom;

SEr = SE (1 - pt ) = mean energy transfer in a single collision by atoms

which are not trapped.

Equations (B12), (B13), and (B14) may be now combined to obtain the

accommodation coefficient,

a = 2 (Os - Og (SEr ) - ( ptSEt ) + (PtdEt )
Og Os1	

(B15)

and the fraction trapped,

ft = (pt)
	

(B16)

Finally, we derive an expression for the accommodation coefficient

when the gas and surface temperatures are nearly equal, which is useful

in overcoming numerical uncertainties of the extended soft-cube model

under such conditions. Thermodynamics guarantees that (SE 9 ) will vanish
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for equal temperatures, so that the first term in a Taylor's expansion of

(6E9) obtains

a(O9 = OS ) _ - 2 (5g J(SE)0 g =Os 	 (B17)

Appendix C

Numerical integrations over thermal distributions

For the integrations over gas and surface energy distributions we

compared three methods: (i) direct integration via Simpson's rule;

(ii) Gaussian quadrature; and (iii) Simpson's rule after a transformation

of the form:

f

co	 1

e x f (x)dx -} f f(-.tn z)dz	 (CO
0	 0

With the third procedure, which proved the most accurate, one must choose

a value of the lower limit (equivalent to choosing how far out on the

Maxwell tail to integrate) as well as the fineness of partition of the

integration interval. A partition of 15 points each for gas and surface

energy variables evenly spaced between 1 and 3 x 10-3 proved adequate.

To compare the relative accuracy of different :integration procedures we

used a variant of the computer code whidb.. employs analytic results from

the hard-sphere potential approximation to single encounters. For this

case one may show analytically that detailed balance is satisfied, and

the lack of errors in the single encounters thus provides a very sensi-

tive test of the accuracy of the subsequent numerical techniques. With
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the procedure described above, we were able to obtain an accuracy in this

step of 1 part in 104.

The integration over phase angle also required care, since the trap-

ping of an impinging gas atom is very sensitive to phase. Furthermore,

the trapped and untrapped atoms must be handled separately, resulting in

integration over grids with many zero entries. In this situation,

trapezoidal rule proved more accurate than Simpson's rule. We tes, .a

the dependence of the results on the fineness of the phase grid, using

both the results of sensitivity to fineness and the detailed balancing

check. A grid of 20 points kept errors to less than 10%.

Since the probability of trapping a gas atom varies greatly over the

parameter space of interest, there were some cases with significant trap-

ping only for the lowest gas energy grid point. In this case, any of the

standard integration methods seriously overestimate the importance of

trapping when, though small, it is still a significant contribution to

the total energy transfer. In this case one may make use of the near

constancy of the energy transfer and the Boltzmann distribution between

the first two gas energy grid points to express the fraction trapped in

terms of the ratio of energy transfer to the energy difference between

the first two grid points.

With tit-'s refinement and the grid sizes mentioned above, our tests

show the integrations accurate to about 10%, so that with the additional

10% inaccuracy due to interpolating in the grid of results for individual

encounters (see appendix A) we expect an overall uncertainty in a and

ft to be 20%.
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Table I

Gas surface interaction parameters

Gas/surface 11 6 
D 
(K) 

[101
b(X) 

[13,141 D(K) 
[3,13,16,17,181

He 3 /W 0.016 400 0.26 50	 100

He 4 /W 0.022 400 0.26 50	 100

Ne/W 0.11 400 0.27 200	 350

A/W 0.22 400 0.34 950

Kr/W 0.46 400 0.39 2250

Xe/W 0.71 400 0.40 4500

He/Li 0.58 370 0.5 20 - 60

He/Na 0.17 158 0.55 20 - 60

Ne/Na 0.88 158 0.56 40 - 200

He/K 0.10 90 0.63 20 - 60

Ne/K 0.52 90 0.64 40 - 200

, I
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Table 2

Nonequilibrium accommodation coefficients for helium and argon on tungsten

Ar/W:	 Tg	 303 K

TS 1073 K 1335 K 1558 K 1785 K

a(experimental) 	 [25] 25 ± 5
a

25 ± 6 22	 6 23	 7

a(D = 950 K, 03
D 
b	 43 KA) 31 30 29 29

He/W:	 Tg	 77 K

Ts 97 K 117 K 137 K 147 K

a(experimental) [23] 1.26 1.26 1.26 1.28

a(D = 60 K, ce
D 
b	 60 KR) 1.04 1.09 1.15 1.15

a(D = 100 K, cO
D b
	 73 Y-k) 1.28 1.46 1.51 1.52

He/W:	 Tg	 303 K

Ts 1073 K 1335 K 1558 K 1785 K

a(experimental) [25] 1.8	 0.2 1.8	 0.2 1.8	 0.2 1.8	 0.2

a(D	 60 K, ce
D 
b = 60 Kai 2.0 2.0 1.9 2.0

a(D	 100 K, cODb	 73 Y-k 2.1 2.1 2.2 2.3

aAll values of	 a	 are multiplied by 100.
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Table 3

Equilibrium accommodation coefficients for rare gases on alkali

metals

He/Li: Ts 83 K 193 K 273 K

a(experimental) [26,27] 2.8a 4.7 6.0

a(D = 20 K; c6 Db = 80 KA) 2.0 8.1 10.0

a(D = 60 K; c6 Db =100 KR) 1.6 5.2 7.1

He/Na: Ts 78 K 90 K 195 K 298 K

a(experimental) [26,27] 3.5 3.8 6.5 9

a(D = 20 K; c6 Db = 60 KA) 2.9 4.6 7.4 10.3

a(D = 60 K; c6Db = 70 KA) 4.1 3.8 8.4 11.0

He/K: Ts 77.4 K 90.2 K 193 K 273 K

a(experimental) [26,27] 4.1 4.3 6.2 7.7

a(D = 20 K; c6 Db = 50 Kai) 3.2 3.9 7.6 8.8

a(D = 60 K; c6 Db =63 KR) 3.6 4.3 6.6 7.4

Ne/Na: Ts 78 K 90 K 195 K 298 K

a(experimental) [26,27] 6 6.5 12 20

a (D = 80 K; c6Db =28 KR) 12 12 12 12.5

a (D = 240 K; c6 Db = 50 KA) 10.2 9.2 11.7 13.0

Ne/K: Ts 77.4 K 90.2 K 193 K 273 K

a(experimental) [26,27] 6.7 7.1 12 17.8

a(D = 80 K; c6 Db = 33 KA) 6.6 8.6 12.5 13.7

a (D = 240 K; c6 Db =50 KA) 7.5 7.2 9.4 11.8

Ar/K: Ts 77.4 K 90.2 K 193 K 273 K

a(experimental) [26,27] 48 43.5 38.6 44

a(D = 300 K: c6 Db =18 KX) 50 47 36 32

a(D = 950 K; c6Db =45 KA) 46 43 32 30

aAll values of a are multiplied by 100.

44

.l

4

C

5.

LZtjl



r

a

ti

Figure Captions

Fig. 1. Geometry of an individual collision. The surface is represented

by an array of cubical atoms on springs. The gas atom, approaching at

angle a to the surface normal, is accelerated in the normal direction

and begins its interaction with a single atom while moving at angle e'.

During the collision its momentum parallel to the surface is conserved;

but that in the normal direction is altered. Depending on the size of

the exchange, the gas atom may rebound (dashed line) or hop and possibly

be trapped on the surface (dotted line).

Fig. 2. Equilibrium (T s = Tg = T) accommodation coefficients for neon on

tungsten. Crosses indicate experimental measurements [23,26,27]; for

temperatures of 450 K and 600 K, their vertical heights indicate the

spread of experimental results. The solid lines represent computed values

using the hopping case with parameter values D = 240 K, ce Db = 50 KA

and D = 400 K, ceDb = 65 KA labelled by the value of D. The dashed

lines represent the best-fit results for the nonhopping case with

D = 240 K, ceDb = 38 KA and D = 400 K, cODb = 50 KA.

Fig. 3. Equilibrium accommodation coefficients for helium on tungsten.

Crosses represent experimental data for 4 H on tungsten, and the vertical

arrows represent measured differences between 3 H and 4 H on tungsten

[7,23,26,27,28,29,30,31]. The solid curves represent calculated values

for 4 H for the cases D = 60 K, ceDb = 60 KA and D = 100 K, ceDb = 75 KA.

The dashed curves represent calculated values for 3 H for the cases

D = 60 K, ceDb = 60 KA and D = 100 K, ceDb = 75 KX.
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Fig. 4. Equilibrium accommodation coefficients for argon, krypton, and

xenon on tungsten. Experimental data [23,26,27] are represented by the	 t

symbols: Ar = +, Kr = o, Xe = x. The computed fits, represented by the

solid curves, correspond to the following parameter choices: Ar,

D = 950 K, c6Db = 43 KA; Kr, D = 2250 K, c6Db = 46 KA; Xe, D = 4250 K,

cBDb = 43 KA.

Fig. 5. The correction factor c. Results from the best computed fits

to experimental data are plotted. For the noble gases on alkali metals,

two fits are given o and o corresponding to the plausible range of the

parameter D. Figures 5a and 5b correspond respectively to typical gas

energies of 300 K and 600 K respectively. The correlation of c with

tc Jt e is evident in a and b, whereas no correlation of c with p is

observed for u < 1 in 5c.

Fig. 6. Hydrogen molecules on graphite. Values for the equilibrium

(Tg = Ts ) accommodation coefficient a (solid line) and trapping fraction

ft (dashed line), computed with parameter values discussed in the text,

are given. Experimental values for a are indicated by x [19].

Fig. 7. Dependence of the accommodation coefficient on mass ratio u.

The curves are labelled with the corresponding values of Tg/D = Ts/D,

except for the heavy solid line labelled "fp," which represents the result

for free-particle interactions. The groups of curves represent different

values for K: solid lines, K = 1.0; dashed lines, K = 0.32, dash-dotted

lines, K = 0.1.
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Fig. 8. Dependence of the accommodation coefficient on the parameter K.

Curves are labelled b the corresponding value of the ratio TY	 P	 g	 ID. The
F

curves presented are for Ts /D = 0.1 but are relatively insensitive to

Ts /D as is illustrated in the figs. 9b and 9c. The two groups of curves

"

	

	 correspond to different values of mass ratio: solid curves represent

U = 0.455 while dashed curves represent p = 0.11.

Fig. 9 Dependence of accommodation coefficient on surface temperature,,

Curves are labelled with the corresponding value of the ratio Tg/D.

Different groups of curves correspond to different values of K: solid

curves, K = 1.0; dashed curves, K = 0.32; dot-dashed curves, K = 0.1.

The mass ratio if u = 0.022 in fig. 9a and 0.11 in fig. 9b.

Fig. 10. Definition of coordinates describing a zoliisi.on. The corre-

sponding dimensionless parameters X and n are given in the parentheses.

47



Af

BOUN

HOP............
MEAN

SURFACE

^^w T ;1

Fig. 1

43



15 1 
NOW

10

100

5

0

240

00*1	 400

	

000, 
OOP	

W.-	
dw^

	

e-0	 240

400

luo	 200	 300	 400	 500	 600
T, K

Fig. 2

49



60HOW

60

00, 00*
1	 100

Z, 'Oor	 loo

2.5

2.0

100

1.5

I

woo

u	 100	 200	 300	 400	 500	 600
T, K

Fig. 3

50

1.0

NO



a
	

u

e,

10

.6

a

.4

a0 0

0

8	 Xe/W

O
O

O	 Kr/W
n

O

^Ar/Ŵ,
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