323 research outputs found
Carbon assimilation strategies in ultrabasic groundwater: clues from the integrated study of a serpentinization-influenced aquifer
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L. M., Brazelton, W. J., McLean, C., Putman, L. I., Hyer, A., Kubo, M. D. Y., Hoehler, T., Cardace, D., & Schrenk, M. O. . Carbon assimilation strategies in ultrabasic groundwater: clues from the integrated study of a serpentinization-influenced aquifer. mSystems, 5(2), (2020): e00607-00619, doi: 10.1128/mSystems.00607-19.Serpentinization is a low-temperature metamorphic process by which ultramafic rock chemically reacts with water. Such reactions provide energy and materials that may be harnessed by chemosynthetic microbial communities at hydrothermal springs and in the subsurface. However, the biogeochemistry mediated by microbial populations that inhabit these environments is understudied and complicated by overlapping biotic and abiotic processes. We applied metagenomics, metatranscriptomics, and untargeted metabolomics techniques to environmental samples taken from the Coast Range Ophiolite Microbial Observatory (CROMO), a subsurface observatory consisting of 12 wells drilled into the ultramafic and serpentinite mélange of the Coast Range Ophiolite in California. Using a combination of DNA and RNA sequence data and mass spectrometry data, we found evidence for several carbon fixation and assimilation strategies, including the Calvin-Benson-Bassham cycle, the reverse tricarboxylic acid cycle, the reductive acetyl coenzyme A (acetyl-CoA) pathway, and methylotrophy, in the microbial communities inhabiting the serpentinite-hosted aquifer. Our data also suggest that the microbial inhabitants of CROMO use products of the serpentinization process, including methane and formate, as carbon sources in a hyperalkaline environment where dissolved inorganic carbon is unavailable.We thank McLaughlin Reserve, in particular Paul Aigner and Cathy Koehler, for hosting sampling at CROMO and providing access to the wells, A. Daniel Jones and Anthony Schilmiller for their advice regarding metabolite extraction and mass spectrometry, Elizabeth Kujawinski for her guidance in metabolomics data analysis and interpretation, and Julia McGonigle, Christopher Thornton, and Katrina Twing for assistance with metagenomic and computational analyses
Pion parameters in nuclear medium from chiral perturbation theory and virial expansion
We consider two methods to find the effective parameters of the pion
traversing a nuclear medium. One is the first order chiral perturbation
theoretic evaluation of the pion pole contribution to the two-point function of
the axial-vector current. The other is the exact, first order virial expansion
of the pion self-energy. We find that, although the results of chiral
perturbation theory are not valid at normal nuclear density, those from the
virial expansion may be reliable at such density. The latter predicts both the
mass-shift and the in-medium decay width of the pion to be small, of about a
few MeV.Comment: 9 Pages RevTex, 3 eps figure
Neutron charge form factor at large
The neutron charge form factor is determined from an analysis of
the deuteron quadrupole form factor data. Recent calculations, based
on a variety of different model interactions and currents, indicate that the
contributions associated with the uncertain two-body operators of shorter range
are relatively small for , even at large momentum transfer . Hence,
can be extracted from at large without undue
systematic uncertainties from theory.Comment: 8 pages, 3 figure
Covariant and Heavy Quark Symmetric Quark Models
There exist relativistic quark models (potential or MIT-bag) which satisfy
the heavy quark symmetry (HQS) relations among meson decay constants and form
factors. Covariant construction of the momentum eigenstates, developed here,
can correct for spurious center-of-mass motion contributions.Proton form factor
and M1 transitions in quarkonia are calculated. Explicit expression for the
Isgur-Wise function is found and model determined deviations from HQS are
studied. All results depend on the model parameters only. No additional ad hoc
assumptions are needed.Comment: 34 pages (2 figures not included but avaliable upon request), LATEX,
(to be published in Phys.Rev.D
A model for two-proton emission induced by electron scattering
A model to study two-proton emission processes induced by electron scattering
is developed. The process is induced by one-body electromagnetic operators
acting together with short-range correlations, and by two-body
currents. The model includes all the diagrams containing a single correlation
function. A test of the sensitivity of the model to the various theoretical
inputs is done. An investigation of the relevance of the currents is
done by changing the final state angular momentum, excitation energy and
momentum transfer. The sensitivity of the cross section to the details of the
correlation function is studied by using realistic and schematic correlations.
Results for C, O and Ca nuclei are presented.Comment: 30 pages, 18 figures, 3 table
Superscaling of Inclusive Electron Scattering from Nuclei
We investigate the degree to which the concept of superscaling, initially
developed within the framework of the relativistic Fermi gas model, applies to
inclusive electron scattering from nuclei. We find that data obtained from the
low energy loss side of the quasielastic peak exhibit the superscaling
property, i.e., the scaling functions f(\psi') are not only independent of
momentum transfer (the usual type of scaling: scaling of the first kind), but
coincide for A \geq 4 when plotted versus a dimensionless scaling variable
\psi' (scaling of the second kind). We use this behavior to study as yet poorly
understood properties of the inclusive response at large electron energy loss.Comment: 33 pages, 12 color EPS figures, LaTeX2e using BoxedEPSF macros; email
to [email protected]
The Decuplet Revisited in PT
The paper deals with two issues. First, we explore the quantitiative
importance of higher multiplets for properties of the decuplet in
chiral perturbation theory. In particular, it is found that the lowest order
one--loop contributions from the Roper octet to the decuplet masses and
magnetic moments are substantial. The relevance of these results to the chiral
expansion in general is discussed. The exact values of the magnetic moments
depend upon delicate cancellations involving ill--determined coupling
constants. Second, we present new relations between the magnetic moments of the
decuplet that are independent of all couplings. They are exact at the
order of the chiral expansion used in this paper.Comment: 7 pages of double column revtex, no figure
Controls on methane concentration and stable isotope (δ2H-CH4 and δ13C-CH4) distributions in the water columns of the Black Sea and Cariaco Basin
Methane (CH4) concentration and stable isotope (δ2H-CH4 and δ13C-CH4) depth distributions show large differences in the water columns of the Earth's largest CH4-containing anoxic basins, the Black Sea and Cariaco Basin. In the deep basins, the between-basin stable isotope differences are large, 83‰ for δ2H-CH4 and 9‰ for δ13C-CH4, and the distributions are mirror images of one another. The major sink in both basins, anaerobic oxidation of CH4, results in such extensive isotope fractionation that little direct information can be obtained regarding sources. Recent measurements of natural 14C-CH4 show that the CH4 geochemistry in both basins is dominated (∼64 to 98%) by inputs of fossil (radiocarbon-free) CH4 from seafloor seeps. We derive open-system kinetic isotope effect equations and use a one-dimensional (vertical) stable isotope box model that, along with isotope budgets developed using radiocarbon, permits a quantitative treatment of the stable isotope differences. We show that two main factors control the CH4 concentration and stable isotope differences: (1) the depth distributions of the input of CH4 from seafloor seeps and (2) anaerobic oxidation of CH4 under open-system steady state conditions in the Black Sea and open-system non-steady-state conditions in the Cariaco Basin
Infinite Nuclear Matter on the Light Front: Nucleon-Nucleon Correlations
A relativistic light front formulation of nuclear dynamics is developed and
applied to treating infinite nuclear matter in a method which includes the
correlations of pairs of nucleons: this is light front Brueckner theory. We
start with a hadronic meson-baryon Lagrangian that is consistent with chiral
symmetry. This is used to obtain a light front version of a one-boson-exchange
nucleon-nucleon potential (OBEP). The accuracy of our description of the
nucleon-nucleon (NN) data is good, and similar to that of other relativistic
OBEP models. We derive, within the light front formalism, the Hartree-Fock and
Brueckner Hartree-Fock equations. Applying our light front OBEP, the nuclear
matter saturation properties are reasonably well reproduced. We obtain a value
of the compressibility, 180 MeV, that is smaller than that of alternative
relativistic approaches to nuclear matter in which the compressibility usually
comes out too large. Because the derivation starts from a meson-baryon
Lagrangian, we are able to show that replacing the meson degrees of freedom by
a NN interaction is a consistent approximation, and the formalism allows one to
calculate corrections to this approximation in a well-organized manner. The
simplicity of the vacuum in our light front approach is an important feature in
allowing the derivations to proceed. The mesonic Fock space components of the
nuclear wave function are obtained also, and aspects of the meson and nucleon
plus-momentum distribution functions are computed. We find that there are about
0.05 excess pions per nucleon.Comment: 39 pages, RevTex, two figure
- …
