274 research outputs found

    Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress.

    Get PDF
    Hillion M, Bernhardt J, Busche T, et al. Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Sci Rep. 2017;7(1): 1195.Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes. Here, we used shotgun proteomics, OxICAT and RNA-seq transcriptomics to analyse protein S-mycothiolation, reversible thiol-oxidations and their impact on gene expression in Mycobacterium smegmatis under hypochlorite stress. In total, 58 S-mycothiolated proteins were identified under NaOCl stress that are involved in energy metabolism, fatty acid and mycolic acid biosynthesis, protein translation, redox regulation and detoxification. Protein S-mycothiolation was accompanied by MSH depletion in the thiol-metabolome. Quantification of the redox state of 1098 Cys residues using OxICAT revealed that 381 Cys residues (33.6%) showed >10% increased oxidations under NaOCl stress, which overlapped with 40 S-mycothiolated Cys-peptides. The absence of MSH resulted in a higher basal oxidation level of 338 Cys residues (41.1%). The RseA and RshA anti-sigma factors and the Zur and NrdR repressors were identified as NaOCl-sensitive proteins and their oxidation resulted in an up-regulation of the SigH, SigE, Zur and NrdR regulons in the RNA-seq transcriptome. In conclusion, we show here that NaOCl stress causes widespread thiol-oxidation including protein S-mycothiolation resulting in induction of antioxidant defense mechanisms in M. smegmatis. Our results further reveal that MSH is important to maintain the reduced state of protein thiols

    Bottom-up strategies for the assembling of magnetic systems using nanoclusters

    Get PDF
    International audienceIn the frame of the 20th Anniversary of the Journal of Nanoparticle Research (JNR), our aim is to start from the historical context twenty, years ago and to give some recent results and perspectives concerning nanomagnets prepared from clusters preformed in the gas phase using the Low Energy Cluster Beam Deposition (LECBD) technique. In this paper, we focus our attention on the typical case of Co clusters embedded in various matrices to study interface magnetic anisotropy and magnetic interactions as a function of volume concentrations, and on still current and perspectives through two examples of binary metallic 3d-5d TM (namely CoPt and FeAu) clusters assemblies to illustrate size-related and nanoalloy phenomena on magnetic properties in well-defined mass-selected clusters. The structural and magnetic properties of these cluster assemblies were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-Ray Absorption Fine Structure (EXAFS) and X-Ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of both NPs and matrix, we observe different magnetic responses compared to their bulk counterparts. In particular, we show how finite size effects (size reduction) enhance their magnetic moment and how specific relaxation in nanoalloys can impact their magnetic anisotropy

    Superluminal X-shaped beams propagating without distortion along a coaxial guide

    Get PDF
    In a previous paper [Phys. Rev. E64 (2001) 066603; e-print physics/0001039], we showed that localized Superluminal solutions to the Maxwell equations exist, which propagate down (non-evanescence) regions of a metallic cylindrical waveguide. In this paper we construct analogous non-dispersive waves propagating along coaxial cables. Such new solutions, in general, consist in trains of (undistorted) Superluminal "X-shaped" pulses. Particular attention is paid to the construction of finite total energy solutions. Any results of this kind may find application in the other fields in which an essential role is played by a wave-equation (like acoustics, geophysics, etc.). [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Coaxial cables; Bidirectional decomposition; Bessel beams; X-shaped waves; Maxwell equations; Microwaves; Optics; Special relativity; Coaxial metallic waveguides; Acoustics; Seismology; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (22 pages), plus 15 figures; in press in Phys. Rev.

    On the Existence of Undistorted Progressive Waves (UPWs) of Arbitrary Speeds 0v<0 \leq v< \infty in Nature

    Full text link
    We present the theory, the experimental evidence, and fundamental physical consequences concerning the existence of families of undistorted progressive waves (UPWs) of arbitrary speeds 0v<0\leq v < \infty, which are solutions of the homogeneous wave equation, Maxwell equations, and Dirac and Weyl equations.Comment: 77 pages, Latex article, with figures. Includes corrections to the published versio

    HMGA1 Induces Intestinal Polyposis in Transgenic Mice and Drives Tumor Progression and Stem Cell Properties in Colon Cancer Cells

    Get PDF
    Although metastatic colon cancer is a leading cause of cancer death worldwide, the molecular mechanisms that enable colon cancer cells to metastasize remain unclear. Emerging evidence suggests that metastatic cells develop by usurping transcriptional networks from embryonic stem (ES) cells to facilitate an epithelial-mesenchymal transition (EMT), invasion, and metastatic progression. Previous studies identified HMGA1 as a key transcription factor enriched in ES cells, colon cancer, and other aggressive tumors, although its role in these settings is poorly understood.To determine how HMGA1 functions in metastatic colon cancer, we manipulated HMGA1 expression in transgenic mice and colon cancer cells. We discovered that HMGA1 drives proliferative changes, aberrant crypt formation, and intestinal polyposis in transgenic mice. In colon cancer cell lines from poorly differentiated, metastatic tumors, knock-down of HMGA1 blocks anchorage-independent cell growth, migration, invasion, xenograft tumorigenesis and three-dimensional colonosphere formation. Inhibiting HMGA1 expression blocks tumorigenesis at limiting dilutions, consistent with depletion of tumor-initiator cells in the knock-down cells. Knock-down of HMGA1 also inhibits metastatic progression to the liver in vivo. In metastatic colon cancer cells, HMGA1 induces expression of Twist1, a gene involved in embryogenesis, EMT, and tumor progression, while HMGA1 represses E-cadherin, a gene that is down-regulated during EMT and metastatic progression. In addition, HMGA1 is among the most enriched genes in colon cancer compared to normal mucosa.Our findings demonstrate for the first time that HMGA1 drives proliferative changes and polyp formation in the intestines of transgenic mice and induces metastatic progression and stem-like properties in colon cancer cells. These findings indicate that HMGA1 is a key regulator, both in metastatic progression and in the maintenance of a stem-like state. Our results also suggest that HMGA1 or downstream pathways could be rational therapeutic targets in metastatic, poorly differentiated colon cancer

    The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells

    Get PDF
    It is well established that several cell surface receptors interact with each other to form dimers and oligomers, which are essential for their activation. Since little is known about the quaternary structure of P2Y receptors, in the present work, we investigated the expression of the G-protein-coupled P2Y4 subunit as monomeric or higher-order complex protein. We examined both endogenously expressed P2Y4 subtype with the aid of specific anti-P2Y4 antiserum, and heterologously transfected P2Y4-tagged receptors with the use of antitag antibodies. In both cases, we found the P2Y4 receptor displaying molecular masses corresponding to monomeric, dimeric and oligomeric structures. Experiments performed in the absence of reducing agents demonstrated that there is a strict correlation among the multiple protein bands and that the multimeric forms are at least partially assembled by disulphide bonds. The direct demonstration of P2Y4 homodimerisation comes instead from co–transfection and differential co–immunoprecipitation experiments, with the use of differently tagged P2Y4 receptors and antitag antibodies. The structural propensity of the P2Y4 protein to form homo-oligomers may open the possibility of a novel regulatory mechanism of physiopathological functions for this and additional P2Y receptors

    HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the <it>high mobility group A1 </it>(<it>HMGA1</it>) gene is widely overexpressed in diverse cancers and portends a poor prognosis in some tumors, the molecular mechanisms that mediate its role in transformation have remained elusive. <it>HMGA1 </it>functions as a potent oncogene in cultured cells and induces aggressive lymphoid tumors in transgenic mice. Because HMGA1 chromatin remodeling proteins regulate transcription, <it>HMGA1 </it>is thought to drive malignant transformation by modulating expression of specific genes. Genome-wide studies to define HMGA1 transcriptional networks during tumorigenesis, however, are lacking. To define the HMGA1 transcriptome, we analyzed gene expression profiles in lymphoid cells from <it>HMGA1a </it>transgenic mice at different stages in tumorigenesis.</p> <p>Results</p> <p>RNA from lymphoid samples at 2 months (before tumors develop) and 12 months (after tumors are well-established) was screened for differential expression of > 20,000 unique genes by microarray analysis (Affymetrix) using a parametric and nonparametric approach. Differential expression was confirmed by quantitative RT-PCR in a subset of genes. Differentially expressed genes were analyzed for cellular pathways and functions using Ingenuity Pathway Analysis. Early in tumorigenesis, HMGA1 induced inflammatory pathways with NFkappaB identified as a major node. In established tumors, HMGA1 induced pathways involved in cell cycle progression, cell-mediated immune response, and cancer. At both stages in tumorigenesis, HMGA1 induced pathways involved in cellular development, hematopoiesis, and hematologic development. Gene set enrichment analysis showed that stem cell and immature T cell genes are enriched in the established tumors. To determine if these results are relevant to human tumors, we knocked-down HMGA1 in human T-cell leukemia cells and identified a subset of genes dysregulated in both the transgenic and human lymphoid tumors.</p> <p>Conclusions</p> <p>We found that <it>HMGA1 </it>induces inflammatory pathways early in lymphoid tumorigenesis and pathways involved in stem cells, cell cycle progression, and cancer in established tumors. <it>HMGA1 </it>also dyregulates genes and pathways involved in stem cells, cellular development and hematopoiesis at both early and late stages of tumorigenesis. These results provide insight into <it>HMGA1 </it>function during tumor development and point to cellular pathways that could serve as therapeutic targets in lymphoid and other human cancers with aberrant <it>HMGA1 </it>expression.</p

    Methylation Markers of Early-Stage Non-Small Cell Lung Cancer

    Get PDF
    Despite of intense research in early cancer detection, there is a lack of biomarkers for the reliable detection of malignant tumors, including non-small cell lung cancer (NSCLC). DNA methylation changes are common and relatively stable in various types of cancers, and may be used as diagnostic or prognostic biomarkers.We performed DNA methylation profiling of samples from 48 patients with stage I NSCLC and 18 matching cancer-free lung samples using microarrays that cover the promoter regions of more than 14,500 genes. We correlated DNA methylation changes with gene expression levels and performed survival analysis.We observed hypermethylation of 496 CpGs in 379 genes and hypomethylation of 373 CpGs in 335 genes in NSCLC. Compared to adenocarcinoma samples, squamous cell carcinoma samples had 263 CpGs in 223 hypermethylated genes and 513 CpGs in 436 hypomethylated genes. 378 of 869 (43.5%) CpG sites discriminating the NSCLC and control samples showed an inverse correlation between CpG site methylation and gene expression levels. As a result of a survival analysis, we found 10 CpGs in 10 genes, in which the methylation level differs in different survival groups.We have identified a set of genes with altered methylation in NSCLC and found that a minority of them showed an inverse correlation with gene expression levels. We also found a set of genes that associated with the survival of the patients. These newly-identified marker candidates for the molecular screening of NSCLC will need further analysis in order to determine their clinical utility
    corecore