91 research outputs found

    Operationalising a metric of nitrogen impacts on biodiversity for the UK response to a data request from the Coordination Centre for Effects

    Get PDF
    As a signatory party to the Convention on Long Range Transboundary Air Pollution (CLRTAP), the UK has been requested to provide biodiversity metrics for use in assessing impacts of atmospheric nitrogen (N) pollution. Models of soil and vegetation responses to N pollution can predict changes in habitat suitability for many plant and lichen species. Metrics are required to relate changes in a set of species to biodiversity targets. In a previous study, the suitability of the habitat for a set of positive indicator-species was found to be the measure, out of potential outputs from models currently applicable to the UK, which was most clearly related to the assessment methods of habitat specialists at the Statutory Nature Conservation Bodies (SNCBs). This report describes the calculation of values for a metric, based on this principle, for a set of example habitats under different N pollution scenarios. The examples are mainly from Natura-2000 sites, and are defined at EUNIS Level 3 (e.g. F4.1 Wet heath). Values for the biodiversity metric were shown to be greater on all sites in the “Background” scenario than in the scenario with greater N and S pollution, illustrating a positive response of biodiversity to reduced pollution. Results of the study were submitted in response to the ‘Call for Data 2012-14’ by the CLTRAP Co-ordination Centre for Effects (CCE), and presented at the 24th CCE Workshop in April 2014. Metrics calculated on a similar basis were also presented by the Netherlands, Switzerland and Denmark. Such metrics indicate biodiversity status more accurately than other types of metric such as Simpson index or similarity to a reference community, so it was decided to adopt habitat-suitability for positive indicator-species as a common basis for a biodiversity metric in this context. Further work is needed to determine the typical range of metric values in different habitats, and threshold values for damage and recovery. Requirements are likely to be specified in detail in the next CCE Call for Data. The current study shows that a biodiversity metric based on habitat-suitability for positive indicator-species is a useful and responsive method for summarising outputs of models of air pollution impacts on ecosystems

    Spatial controls on dissolved organic carbon in upland waters inferred from a simple statistical model

    Get PDF
    Dissolved organic carbon (DOC) concentrations in upland surface waters in many northern hemisphere industrialised regions are at their highest in living memory, provoking debate over their ‘‘naturalness’’. Because of the implications for drinking water treatment and supply there is increasing interest in the potential for mitigation through local land management, and for forecasting the likely impact of environmental change. However, the dominant controls on DOC production remain unresolved, hindering the establishment of appropriate reference levels for specific locations. Here we demonstrate that spatial variation in long-term average DOC levels draining upland UK catchments is highly predictable using a simplemultiple logistic regression model comprising variables representing wetland soil cover, rainfall, altitude, catchment sensitivity to acidification and current acid deposition. A negative relationship was observed between DOC concentration and altitude that, for catchments dominated by organo-mineral soils, is plausibly explained by the combined effects of changing net primary production and temperature-dependent decomposition. However, the magnitude of the altitude effect was considerably greater for catchments with a high proportion ofwetland cover, suggesting that additional controls influence these sites such as impeded respiratory loss of carbon in wet soils and/or an increased susceptibility to water level drawdown at lower altitudes. The model suggests (1) that continuing reductions in sulphur deposition on acid sensitive organo-mineral soils, will drive further significant increases in DOC and, (2) given the differences in the magnitude of the observed altitude-DOC relationships, that DOC production from catchments with peatdominated soilsmay bemore sensitive to climate change than those dominated by mineral soils. However, given that mechanisms remain unclear, the latter warrants further investigation

    Imaging the shallow subsurface structure of the North Hikurangi subduction zone, New Zealand, using 2-D full-waveform inversion

    Get PDF
    The northern Hikurangi plate boundary fault hosts a range of seismic behaviors, of which the physical mechanisms controlling seismicity are poorly understood, but often related to high pore fluid pressures and conditionally stable frictional conditions. Using 2D marine seismic streamer data, we employ full-waveform inversion (FWI) to obtain a high-resolution 2D P-wave velocity model across the Hikurangi margin down to depths of ~2 km. The validity of the FWI velocity model is investigated through comparison with the pre-stack depth migrated seismic reflection image, sonic well data, and the match between observed and synthetic waveforms. Our model reveals the shallow structure of the overriding plate, including the fault plumbing system above the zone of SSEs to theoretical resolution of a half seismic wavelength. We find that the hanging walls of thrust faults often have substantially higher velocities than footwalls, consistent with higher compaction. In some cases, intra-wedge faults identified from reflection data are associated with low-velocity anomalies, which may suggest they are high-porosity zones acting as conduits for fluid flow. The continuity of velocity structure away from IODP drill site U1520 suggests that lithological variations in the incoming sedimentary stratigraphy observed at this site continue to the deformation front and are likely important in controlling seismic behavior. This investigation provides a high-resolution insight into the shallow parts of subduction zones, which shows promise for the extension of modeling to 3D using a recently-acquired, longer-offset, seismic dataset

    Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations

    Get PDF
    Fertilization of nitrogen (N)-limited ecosystems by anthropogenic atmospheric nitrogen deposition (Ndep) may promote CO2 removal from the atmosphere, thereby buffering human effects on global radiative forcing. We used the biogeochemical ecosystem model N14CP, which considers interactions among C (carbon), N and P (phosphorus), driven by a new reconstruction of historical Ndep, to assess the responses of soil organic carbon (SOC) stocks in British semi-natural landscapes to anthropogenic change. We calculate that increased net primary production due to Ndep has enhanced detrital inputs of C to soils, causing an average increase of 1.2 kgCm−2 (c. 10%) in soil SOC over the period 1750–2010. The simulation results are consistent with observed changes in topsoil SOC concentration in the late 20th Century, derived from sample-resample measurements at nearly 2000 field sites. More than half (57%) of the additional topsoil SOC is predicted to have a short turnover time (c. 20 years), and will therefore be sensitive to future changes in Ndep. The results are the first to validate model predictions of Ndep effects against observations of SOC at a regional field scale. They demonstrate the importance of long-term macronutrient interactions and the transitory nature of soil responses in the terrestrial C cycle

    BICCO-Net II. Final report to the Biological Impacts of Climate Change Observation Network (BICCO-Net) Steering Group

    Get PDF
    • BICCO-Net Phase II presents the most comprehensive single assessment of climate change impacts on UK biodiversity to date. • The results provide a valuable resource for the CCRA 2018, future LWEC report cards, the National Adaptation Programme and other policy-relevant initiatives linked to climate change impacts on biodiversity

    Late Cenozoic Climate History of the Ross Embayment from the AND-1B Drill Hole: Culmination of Three Decades of Antarctic Margin Drilling

    Get PDF
    Because of the paucity of exposed rock, the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from offshore shelf basins through seismic surveys and drilling. The number of holes on the continental shelf has been small and largely confined to three areas (McMurdo Sound, Prydz Bay, and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well cored, the late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285-m-long record of climate history spanning the last 13 m.y. from subsea-floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice-sheet and climate fluctuations for this period of Earth’s history. The >60 cycles of advance and retreat of the grounded ice margin preserved in the AND-1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep-sea oxygen isotope records ~14 m.y.a. A feature of particular interest is a ~90-m-thick interval of diatomite deposited during the warm Pliocene and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity, and retreat of the glaciers on land

    Preliminary Integrated Chronostratigraphy of the AND-1B Core, ANDRILL McMurdo Ice Shelf Project, Antarctica

    Get PDF
    Chronostratigraphic data available for the preliminary age model for the upper 700 m for the AND-1B drill core include diatom biostratigraphy, magnetostratigraphy, 40Ar/39Ar ages on volcanic material, 87Sr/86Sr ages on calcareous fossil material, and surfaces of erosion identifi ed from physical appearance and facies relationships recognised in the AND-1B drill core. The available age data allow a relatively well-constrained age model to be constructed for the upper 700 m of the drill core. Available diatom biostratigraphic constraints and 40Ar/39Ar ages allow a unique correlation of ~70% of the AND- 1B magnetic polarity stratigraphy with the Geomagnetic Polarity Time Scale (GPTS). Unique correlation is not possible in several coarse diamictite intervals with closely spaced glacial surfaces of erosion and sparse microfl ora. However, the age model indicates relatively rapid (up to 1 m/k.y.) and continuous accumulation of intervening fi ner grained diatomaceous intervals punctuated by several half- to millionyear hiatuses representing more than half of the last 7 m.y. in the AND-1B record. The mid- to late Pleistocene is represented by superimposed diamictite units separated from upper Pliocene alternating diamictites/diatomites by a ~1 m.y. hiatus co-incident with a regionally correlated seismic reflection surface. A c. 100 m-thick diatomite represents a signifi cant portion of the early Pliocene record in the AND-1B drill core. Strata below ~620 m are late Miocene in age; however, biostratigraphic constraints are absent below 586 m and correlation with the GPTS is relatively unconstrained. At the time of writing, the only chronostratigraphic data available below 700 mbsf include three 40Ar/39Ar ages on volcanic clasts from near 1280 mbsf affording a maximum depositional age of 13.57 Ma for the base of the AND-1B drill core

    Late Cenozoic Climate History of the Ross Embayment from the AND-1B Drill Hole: Culmination of Three Decades of Antarctic Margin Drilling

    Get PDF
    Because of the paucity of exposed rock, the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from offshore shelf basins through seismic surveys and drilling. The number of holes on the continental shelf has been small and largely confined to three areas (McMurdo Sound, Prydz Bay, and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well cored, the late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285-m-long record of climate history spanning the last 13 m.y. from subsea-floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice-sheet and climate fluctuations for this period of Earth’s history. The >60 cycles of advance and retreat of the grounded ice margin preserved in the AND-1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep-sea oxygen isotope records ~14 m.y.a. A feature of particular interest is a ~90-m-thick interval of diatomite deposited during the warm Pliocene and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity, and retreat of the glaciers on land

    Geophysical structure of the Southern Alps orogen, South Island, New Zealand

    Get PDF
    The central part of the South Island of New Zealand is a product of the transpressive continental collision of the Pacific and Australian plates during the past 5 million years, prior to which the plate boundary was largely transcurrent for over 10 My. Subduction occurs at the north (west dipping) and south (east dipping) of South Island. The deformation is largely accommodated by the ramping up of the Pacific plate over the Australian plate and near-symmetric mantle shortening. The initial asymmetric crustal deformation may be the result of an initial difference in lithospheric strength or an inherited suture resulting from earlier plate motions. Delamination of the Pacific plate occurs resulting in the uplift and exposure of mid-crustal rocks at the plate boundary fault (Alpine fault) to form a foreland mountain chain. In addition, an asymmetric crustal root (additional 8 - 17 km) is formed, with an underlying mantle downwarp. The crustal root, which thickens southwards, comprises the delaminated lower crust and a thickened overlying middle crust. Lower crust is variable in thickness along the orogen, which may arise from convergence in and lower lithosphere extrusion along the orogen. Low velocity zones in the crust occur adjacent to the plate boundary (Alpine fault) in the Australian and Pacific plates, where they are attributed to fracturing of the upper crust as a result of flexural bending for the Australian plate and to high pressure fluids in the crust derived from prograde metamorphism of the crustal rocks for the Pacific plate
    corecore