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Abstract 

Dissolved organic carbon (DOC) concentrations in upland surface waters in many northern hemisphere 

industrialised regions are at their highest in living memory, provoking debate over their “naturalness”. 

Because of the implications for drinking water treatment and supply there is increasing interest in the potential 

for mitigation through local land management, and for forecasting the likely impact of environmental change. 

However, the dominant controls on DOC production remain unresolved, hindering the establishment of 

appropriate reference levels for specific locations. Here we demonstrate that spatial variation in long-term 

average DOC levels draining upland UK catchments is highly predictable using a simple multiple logistic 

regression model comprising variables representing wetland soil cover, rainfall, altitude, catchment 

sensitivity to acidification, and current acid deposition.  A negative relationship was observed between DOC 

concentration and altitude that, fro catchments dominated by organo-mineral soils, is plausibly explained by 

the combined effects of changing net primary production and temperature-dependent decomposition. 

However, the magnitude of the altitude effect was considerably greater for catchments with a high proportion 

of wetland cover, suggesting that additional controls influence these sites such as impeded respiratory loss of 

carbon in wet soils and/or an increased susceptibility to water level drawdown at lower altitudes. The model 

suggests 1) that continuing reductions in sulphur deposition on acid sensitive organo-mineral soils, will drive 

further significant increases in DOC and, 2) given the differences in the magnitude of the observed altitude-

DOC relationships, that DOC production from catchments with peat-dominated soils may be more sensitive 

to climate change than those dominated by mineral soils. However, given that mechanisms remain unclear, 

the latter warrants further investigation.  
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Introduction 

Surface waters draining organic-rich soils (deep peats, and ‘organo-mineral’ soils with either a peaty or 

organic-matter rich upper horizon) typically contain significant amounts of dissolved organic matter (DOM), 

commonly quantified in terms of dissolved organic carbon (DOC) concentration. A contributor to both 

organic acidity and water “colour”, DOM in these systems is derived predominantly from allocthonous 

organic matter, originating largely from decomposing vegetation and plant root exudates (Thurman 1985). 

Processes determining the terrestrial production and fluvial export of DOM from boreal landscapes are 

receiving mounting attention, reflecting growing recognition of the importance of DOC in the global carbon 

cycle (Bauer and Bianchi 2011) and wider soil biochemical processes (Taylor and Townsend 2010). More 

immediate economic concerns have arisen in regions such as the northern and western UK, parts of 

Scandinavia, and the Czech Republic (Oulehle and Hruska 2009), where surface waters supply drinking water 

to the majority of the population. Here, and elsewhere in northern Europe and North America, DOC 

concentrations have been rising over the last quarter century or more (Monteith et al. 2007; Skjelkvåle et al. 

2005). 

 

There is a widely held perception in the UK and elsewhere that current DOC concentrations in upland surface 

waters used for water supply are unnaturally high.  In part this stems from observations of rising levels of 

DOC in waters draining catchments that have been significantly modified by human activities. In the UK, 

peat erosion is widespread in catchments used for water supply. This degradation has been attributed 

variously to loss of bryophyte cover through effects of air pollution (e.g. Ferguson and Lee (1983)) the effects 

of drainage schemes (Holden et al. 2007), over-grazing by sheep (Evans 1997) and excessive burning in the 

course of grouse moor management (Yallop and Clutterbuck 2009) – problems that also concern stakeholders 

tasked with conserving upland biodiversity. However, it is also clear that DOC concentrations vary markedly 

across upland catchments as a result of intrinsic geophysical factors. For example, concentrations tend to be 

higher in catchments dominated by peats, regardless of the extent of physical degradation (Hope et al. 1994).  

 

Furthermore, upland soils have been shown to be biogeochemically sensitive to the influences of atmospheric 

pollutants, and particularly the acidifying effects of sulphur, nitrogen and hydrochloric acid (Evans et al. 
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2012; Evans et al. 2011). Over the past two decades, levels of acid deposition in the UK have fallen 

substantially in response to an international drive to control acidic emissions (Curtis and Simpson 2014) and 

overall, sulphur deposition in the UK is estimated to have declined by 80% from 1986 to 2006 (RoTAP 

2012). DOC concentrations in remote surface waters have been observed to change in proportion to these 

reductions across the industrialised northern hemisphere (Monteith et al. 2007) in an apparent solubility-

driven response to declining soil acidity (Ekstrom et al. 2011; Evans et al. 2012) and/or declining soil water 

ionic strength (Hruška et al. 2009). It is therefore feasible that recent increases in DOC in some areas represent 

a return toward pre-industrial (i.e. pre-acidification) conditions. There are very few long term records 

internationally of sufficient duration to chart DOC responses to rising and, more recently, falling acid 

deposition. However, a century long record of transparency in a Bohemian lake (Vrba et al. 2003), and a 420 

nm absorbance record from Alsterälven in southern Sweden that reaches back to the 1960s (Forsberg 1992), 

both lend support for this “recovery” hypothesis.  

 

Alternatively, deposition-induced increases in solubility may be leading to unprecedented levels of DOC if 

other factors favouring increased DOC leaching have also changed since the pre-industrial period. For 

example, it has been suggested that net primary productivity (NPP), and hence the supply of potentially 

soluble organic matter, is now higher than in pre-industrial times as a result of the accumulation of 

atmospherically deposited reactive nitrogen in these catchments (Rowe et al. 2014; Tipping et al. 2012). 

Various studies have also suggested that either total decomposition rates, or the proportion of decomposed 

organic matter leached as DOC rather than respired as CO2, may have increased due to climatic and/or 

management changes (Freeman et al. 2001). 

 

Increasingly, physical catchment-level intervention is being proposed to stabilise, or even reverse, inputs of 

DOC from physically degraded catchments to the water supply system (e.g. SCAMP (2013). However, there 

is currently no statistical or conceptual framework for deriving expected DOC concentrations for waters in a 

particular environmental setting, and therefore no way of gauging the extent to which observations may be 

deviating from those expected in the absence of local impacts. Hydrochemical records rarely, if ever, reach 

back prior to such disturbances, while palaeolimnological DOC reconstruction techniques that have the 
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potential to predict historical concentrations in lakes (e.g. Rosén et al. (2011)) are still under development 

and cannot, in any case, be applied to running waters.  

  

If spatial variation in DOC concentrations in surface waters draining largely physically undisturbed 

catchments could be modelled accurately from a set of variables representing dominant controls, this would 

not only guide the assessment of the DOC status of other sites of concern (e.g. to water authorities), but would 

also provide long-term baselines for these sites against which long term trends and shorter term variation 

could subsequently be modelled. The practice of defining long-term climatic baselines is already standard 

practice in the field of modelling and prediction of climate change.  Finally, the structure of such a model 

should provide a clearer understanding of the relative roles of physical and biogeochemical factors in 

determining spatial variation in DOC and, consequently, in the prediction of future DOC trajectories in view 

of anticipated future climate change and further reductions in acid deposition.  

 

In this paper we describe the development and structure of a simple multiple logistic regression model that 

explains spatial variation in long-term (20 year mean; 1992-2011) DOC concentrations for an intensively and 

continuously monitored set of 21 upland lakes and streams across the UK. By using as long a period as the 

dataset allowed we sought to minimise the effect of short-term, site-specific, variation in DOC that could 

otherwise cloud the spatial signal, thus providing the most robust baseline possible for future dynamic 

modelling. However, since most sites show long term changes in DOC that have slowed in recent years, we 

also describe an identically parameterised, although slightly poorer fitting model, based on a more 

contemporary dataset (2009-2013), that is arguably of more immediate value in the assessment of DOC status 

of other recently monitored sites.  Finally, focussing on the structure of the most parsimonious (20 year mean) 

model, we consider the processes that may govern spatial variability in DOC and the potential value of the 

model as a predictive tool. 

 

Materials and methods 

 

Study sites 
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Our study was focussed primarily on sites from the UK Upland Waters Network (UWMN) (Table 1). The 

UWMN includes the outflows from small lakes (ranging in surface area from 2-114 ha, in volume from 3.6 

x 104 - 7.4 x 106 m3 and in residence time from around 2 weeks to 6 months) and streams (first or second 

order) from many regions of the UK uplands (Battarbee et al. 2014).  The UWMN is an expansion of the 

former UK Acid Waters Monitoring Network, which was established to assess the efficacy of regional 

reductions in acid pollutants (see for example, Monteith and Evans (2005)). AWMN sites were selected 

originally on the criteria of low geological acid-buffering capacity and the absence of marked local catchment 

interference or point source contamination that might otherwise complicate acidification/recovery signals. 

The main exception to the latter criterion was the selection of a subset of sites with significant conifer 

plantation forestry. The remaining sites were either subject to low-intensity grazing (mainly by sheep or deer) 

which maintains a grassland or heathland cover, or were located above the natural tree line. Two southern 

English UWMN sites were excluded from our analysis on the grounds that their catchments were not 

glaciated in the last glacial period and active sulphur cycling in B horizons distorts the strong link between 

sulphur deposition and sulphate concentration in runoff that is seen across the rest of the network (Cooper 

2005). In order to extend the geochemical gradient into more strongly buffered systems the dataset also 

included the Environmental Change Network (ECN) stream site, the Trout Beck (northern Pennines) that 

drains blanket peat overlying carboniferous limestone.   

 

Water sampling and analysis 

Water chemistry samples from the outflow of each lake were collected usually in the first week of March, 

June, September and December. The UWMN streams were sampled every month in order to better capture 

the larger hydrochemical variation of these systems.   The second order ECN Troutbeck stream was sampled 

weekly. All water samples were filtered using 0.45 µm cellulose nitrate filters and analysed for DOC using 

a TOC analyser by first acidifying samples to purge inorganic carbon, followed by high temperature 

combustion and spectrometric analysis of the resulting CO2. Acid anions were analysed by ion 

chromatography, and base cations using an Inductively Coupled Plasma Mass Spectrometer or Optical 

Emission Spectrometer (i.e. ICP-MS or ICP-OES). The laboratories participating in the UWMN operate a 

range of quality control procedures (Gardner 2008) and participate in an annual international AQC 
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assessment provided by the UNECE International Cooperative Programme on the Assessment of 

Acidification of Rivers and Lakes (or ICP Waters Network). 

 

Physical data 

Data for a number of mechanistically plausible metrics or surrogates for potential process drivers were 

compiled to predict spatial variability in DOC, several representing factors that have been linked to DOC in 

previous spatial assessments (see Supplementary Table 1 for full list and explanation of the derivation of the 

soils data).  

 

Area-weighted mean catchment altitude (ALT) was determined from a digital terrain model. Site-specific 

daily precipitation data were obtained for the 1 km square most central to each catchment from the NERC 

Centre for Ecology and Hydrology’s hydrological CHESS (Climate, Hydrological and Ecological research 

Support System) dataset, which is based on interpolated data from the UK Met Office’s network of 

meteorological stations. These data were available at the time of analysis up to the end of 2007 only, so data 

for the period 1988-2007 were used to provide a 20 year annual mean. Precipitation was then corrected for 

evaporative loss (to provide effective precipitation (PE)) by subtracting the UK Met Office’s 1 km square 

resolution Standard-period Average Annual Rainfall (SAAR) evaporation estimate (representing the period 

1961-1990).  

 

Due to local variation in topography, 1 km interpolated air temperature data were unsuitable for determining 

air temperatures for the mid-altitude points of catchments. Mean annual air temperature (MAT) for each site 

was therefore estimated using a linear model describing the relationship between mean annual temperature, 

altitude and latitude for the 12 meteorological stations on the UK Environmental Change Network (ECN) 

which span gradients of altitude and latitude of 100 – 700 m and 50.8 – 57.1 °N respectively; i.e. 

MAT(°C) = 28.5 - (0.343 x latitude) - (0.00612 x ALT)  (R2 = 0.97)  (1) 

- where latitude is in degrees North, and ALT in metres above sea level (masl). 
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Soil data were derived from the UK FAB database which is based on extracted shapefiles from the Soil 

Survey and Land Research Centre, Macaulay Land Use Research Institute, and Department of Environment 

Northern Ireland databases (Curtis pers. comm.). Soil map units were converted to the “Institute of Terrestrial 

Ecology Generic classes”.  Data were represented as percentage cover of each catchment for a range of soil 

types, and included the sum of proportions of peat and peaty gley soils (PPPG) to represent wetland soil 

coverage. 

 

Non-marine concentrations of calcium and magnesium were calculated as an indicator of catchment 

sensitivity to acidification, using the difference between long-term mean concentrations of these ions and a 

hypothetical marine fraction based on long-term mean chloride concentration (cf. Evans et al. (2001). We 

also calculated long term mean sulphate [SO4], nitrate and chloride concentration to represent the contribution 

of these acid anions in runoff.  

 

Data representing spatial variation in the deposition of oxidised sulphur and oxidised and reduced N for the 

period 2001-2003 were obtained from 5km gridded estimates provided by the NERC Centre for Ecology and 

Hydrology and used to inform national air quality policy (RoTAP 2012). These were determined from 

estimates of dry and wet deposition derived from measurements of gas concentrations and of ion 

concentrations in rainfall respectively. Deposition estimates were modelled using the same procedures as for 

the UK deposition estimates (RoTAP 2012; Smith and Fowler 2001; Smith et al. 2000),) and include a 

vegetation canopy resistance model to estimate gas and particle deposition and an orographic enhancement 

for wet deposition. 

 

Data Analysis 

To accommodate a sub-set of UWMN sites for which monitoring started later than 1988, 20 year site means 

for DOC and other hydrochemical variables (see below) were derived for the period April 1992 to March 

2011.  While this period is out of sync with the 20 year precipitation estimates, we assumed between-site 

variation would be much greater than temporal variation in the 20 year means and that this discrepancy would 

therefore be unlikely to weaken the predictive power of this potential explanatory variable. Monitoring of 
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Loch Coire nan Arr was terminated at the end of 2007, but we established that there were only marginal 

differences in mean DOC concentrations for the period 1992-2007 compared to 1992-2011 ( on average 

concentrations for the former period were 96% of those for the latter)  and we therefore decided to keep this 

site in the dataset.  We used the product of DOC and PE to provide an approximation for DOC flux. 

 

Exploratory data analysis involved inspection of a series of scatter plots and Pearson correlation coefficients 

comparing both mean annual DOC and mean annual DOC flux (i.e. DOC x PE) with a broad range of 

potentially explanatory variables (correlation coefficients provided in Supplementary Table 2). Decisions on 

whether or not to log transform each variable were based on the structure of between-site variation. A range 

of candidate multiple logistic regression models, chosen on the basis of backward elimination to minimise 

the Akaike Information Criterion (AIC), were then produced to explain spatial variation in mean annual DOC 

using subsets of the variables that either showed strong individual relationships with either DOC variables, 

and/or have previously been identified in either spatial or temporal studies as being potentially influential 

(see Discussion). The latter included variables representing acid deposition and catchment sensitivity to 

acidification on the basis of observations by Monteith et al. (2007).  

    

The transferability of the most parsimonious, or “final”, spatial model, based on the lowest AIC, was tested 

both internally and externally. First, we carried out leave-one-out cross validation of the UWMN/ECN 

dataset. Second, we compiled the necessary mean DOC and explanatory data for an independent set of lake 

and streams sites. There are very few alternative multi-decadal hydrochemical records for UK upland surface 

waters of sufficient analytical quality available for this purpose. We therefore assembled a dataset for a range 

of sites that were all sampled at least quarterly (lakes) or monthly (streams) within one year between the 

period 1993 and 1997, and analysed for DOC and other hydrochemical variables using analytical methods 

appropriate for dilute waters (Gardner 2008). Effective precipitation for these sites was determined using 

SAAR long-term (1961-1990) average precipitation and evaporation data. 

 

While we deliberately used the longest time series available (i.e. 1992-2011) to develop the most robust 

spatial model of long-term mean concentrations, further modelling of superimposed long-term trends and 
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shorter-term variability is beyond the scope of this paper. As DOC concentrations have increased over much 

of the time period represented, contemporary levels across the UK uplands are likely to exceed those 

predicted on the basis of modelled 20 year means. We therefore repeated the modelling approach using the 

same parameters on a five year dataset covering the period 2009-2013, during which concentrations have 

been relatively stable, in order to provide a more contemporary predictive tool. In this case Loch Coire nan 

Arr was replaced with the neighbouring site Loch Coire Fionnaraich which replaced the former site in 2008. 
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Results and Discussion 

Exploratory analysis 

Long-term mean DOC in our dataset ranged from 1.6 mg L-1 at the second highest site with a catchment 

dominated by peat ranker soils (Scoat Tarn, northern England), to 13.9 mg L-1 at a relatively low elevation 

peatland site (Beagh’s Burn, Northern Ireland) (Table 1). Mean DOC draining the highest altitude site, 

Lochnagar (northeast Scotland) was slightly higher (0.2 mg L-1) than Scoat Tarn, but showed the lowest mean 

annual DOC flux (2.4 g DOC m-2 yr-1) as a consequence of significantly lower annual effective precipitation. 

The three sites with the highest peat and peaty gley cover (i.e. >0.95%; Beagh’s Burn, Loch Tinker (central 

Scotland) and Troutbeck (northern England) had moderate to high mean concentrations and the three highest 

DOC fluxes (ranging from 13.5 to 16.8 g DOC m-2 yr-1). 

 

Correlation coefficients summarising relationships between long-term mean DOC and long-term mean DOC 

flux, and a range of explanatory variables included in our analysis are provided in Supplementary Information 

(Table 2).  Relatively few variables showed statistically significant (p<0.05) relationships with either log 

DOC or log DOC flux. However, log DOC was particularly strongly (positively) correlated with the 

percentage cover of wetland soils (PPPG), negatively correlated with effective precipitation (PE) and 

positively correlated with divalent base cation concentration ([xBC]).  Log DOC flux was negatively 

correlated with altitude (ALT) and positively correlated with mean annual temperature (MAT). A positive 

correlation with log chloride concentration (log Cl) might reflect the strong negative relationship between 

log Cl and ALT. There were no clear relationships between either DOC or DOC flux and any of the 

deposition-based predictors, i.e. log sulphate concentration (log [SO4]) or estimated reduced, oxidised or total 

nitrogen deposition. The four sites with the highest log DOC also showed the highest non-marine divalent 

base cation concentrations, but there was no apparent structure in this relationship for the remaining sites. 

Scatter plots revealed little covariant structure between potential explanatory variables with the obvious 

exception of strong negative relationships between altitude and temperature, a negative relationship between 

altitude and chloride concentration reflecting distance from the coast and hence vulnerability to seasalt 

deposition, and positive relationships between the sulphate concentration and the three nitrogen deposition 

variables.  



12 

 

    

Final model structure 

The most parsimonious logistic regression model (lowest AIC) for explaining spatial variation in 1992-2011 

log DOC concentration comprised five variables and two interactions representing both physical and 

chemical determinands and is structured as follows: 

 

log10 DOC = 2.75 – 6.18x10-4ALT - 1.12x10-4PE  + 1.22PPG – 1.8x10-3ALT*PPG   (2) 

– 1.05log[SO4] -9.32x10-3[xBC] + 5.41log[SO4]*[xBC]  

 

All model terms were highly significant (p = 0.001 or less), and together explained 96.5 % (adjusted R2) of 

the spatial variation in DOC (Table 2). The model included four terms based on three physical parameters: a 

positive effect of the proportion of peat and peaty gley soil in the catchment (PPPG); negative effects of 

altitude (ALT) and effective precipitation (PE), and a negative interaction between ALT and PPPG. The 

combination of these three variables in isolation was sufficient to explain 79% of the variance in DOC. The 

final model also included two hydrochemical parameters - negative effects of non-marine base cation 

concentration ([xBC]) and sulphate concentration log[SO4] – and a positive interaction term between the 

two.     

 

Leave-one-out cross validation of the primary dataset resulted in a very tight relationship between observed 

and predicted values (R2 = 0.92) and a Root Mean Square Error (RMSE) of 1.06 mg DOC L-1 (Figure 1). A 

further independent test of the model, based solely on data obtained from other sites from the mid-1990s, 

also demonstrated strong predictive power with a single exception. Following the removal of this major 

outlier (Cottage Hill Syke – a small tributary of the Troutbeck, discussed below), the remaining DOC 

observations for the sites were strongly correlated with model predictions (R2 = 0.85, p<0.001) with a slope 

of 1.16 and a statistically insignificant intercept of 0.11 (Figure 2).   

 

The structure of the final model has several features in common with previous analyses of spatial 

determinants of DOC, but the model’s overall predictive strength is perhaps unparalleled and provides some 
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confidence that DOC draining upland catchments might be predicted over wide spatial scales on the basis of 

physical catchment characteristics, and estimates of sulphate and divalent base cation leaching. 

The same set of predictor variables (but with hydrochemical variables representing 2009-13 means), all again 

statistically significant, were found to explain a slightly lower proportion of spatial variance (adjusted R2 = 

93.7) in mean 2009-2013 DOC concentrations (Table 2b). Coefficients were generally very similar to those 

in the 1992-2011 baseline model but were 32% and 57% smaller for log[SO4] and the log[SO4] x [xBC] 

interaction term respectively (both of which also showed higher p values). This possibly reflects the greatly 

reduced spatial variation in sulphate concentration in UK waters in recent years resulting from large 

reductions in sulphur deposition that have led to a convergence of sulphate concentrations in surface waters 

nationally (Monteith et al. 2014).      

 

The role of soil type 

The combined proportional cover of the two ‘wetland’ organic soil types, peats and peaty gleys (PPPG), 

provided by far the strongest single predictor of log DOC (positive correlation) – a finding that accords with 

a number of studies from other regions (Aitkenhead et al. 1999; Creed et al. 2008; Dillon and Molot 1997; 

Hope et al. 1994; Xenopoulos et al. 2003), and in isolation explained 63.2% of the total spatial variance. 

While the often highly coloured water draining peatland catchments is sometimes considered a product of 

the peat itself, analyses of carbon isotopes in DOC draining relatively undisturbed upland UK catchments 

indicate DOC from these systems is mostly of very recent origin, i.e. <5 years (Evans et al. 2007; Tipping et 

al. 2010), as has also been found elsewhere (Moore et al. 2013). In this context PPPG would seem to act 

primarily as an indicator of a) soil anoxia, limiting the respiratory loss of newly deposited/exuded organic 

matter, and b) the impediment of vertical routing of drainage waters, and consequently of reduced potential 

for adsorption of DOC by ion-exchange complexes in mineral soil horizons (McDowell and Wood 1984; 

Moore and Jackson 1989), rather than as a simple indicator of the size of the catchment’s terrestrial organic 

carbon store. It is also feasible the DOC draining peat soils may be more recalcitrant than that draining other 

soil types (Moody et al. 2013),   

 

The role of precipitation 
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Effective precipitation provided a strong negative effect in the final model. While this is consistent with a net 

diluting influence on DOC the effect was relatively muted. The model predicts that a four-fold increase in 

PE, (i.e. 500 to 2000 mm) would reduce DOC concentration by circa 40%. Other influences, including the 

shift from vertical to more lateral drainage with increasing precipitation -  reducing the potential for DOC 

adsorption by mineral strata, the fact that wetter environments are more likely to be characterised by organic 

soils, and the effect of precipitation in reducing residence time and hence exposure to photo-mineralisation, 

may all have partially counteracted the dilution effect. 

 

The role of altitude 

When PE is held constant the model predicts that DOC, and hence DOC flux, will increase exponentially with 

declining altitude (ALT) (Figure 3 – solid black line). Strong negative relationships between DOC and 

altitude have also been reported widely before (Sobek et al. 2007; Weyhenmeyer and Karlsson 2009; 

Xenopoulos et al. 2003).  While effective as a spatial predictor, from a mechanistic view its inclusion in the 

model has limited direct explanatory value because a wide range of environmental parameters tend to 

correlate with altitude (Creed et al. 2008).   

 

Inter-annual variability in total organic carbon concentrations has been shown to be tightly correlated with 

terrestrial gross primary productivity in waters draining a Scottish peatland (Dinsmore et al. 2013), while 

field experiments in the northern Pennines have demonstrated a strong temporal correlation between DOC 

production and net primary production (NPP) as inferred from cumulative solar radiation during the growing 

season (Harrison et al. 2008). These findings therefore support previous spatial modelling exercises in which 

effects of altitude on DOC have been linked to primary productivity through: the number of days in the year 

that mean daily air temperature exceeds 0°C (Sweden) (Weyhenmeyer and Karlsson 2009); the number of 

growing degree days (north-eastern Canada) (Creed et al. 2008); and, the extent of plant cover as inferred by 

the remotely sensed Normalised Difference Vegetation Index (Norway) (Larsen et al. 2011). However, these 

spatial studies have not compared the magnitude of the proposed effect of these drivers with the size of the 

apparent response in DOC.  
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In comparison, the influence of temperature (which also declines markedly with increasing altitude) on soil 

organic matter decomposition rates has been reported widely. The kinetic theory of Arrhenius suggests that 

organic matter decomposition rates should increase exponentially with increasing temperature, and that 

decomposition of more recalcitrant substrates, such as the “low quality” organic matter that characterises 

highly organic soils, will show more sensitive relationships with temperature because of their relatively high 

activation energies (Davidson and Janssens 2006). In a meta-analysis of 494 studies of soils worldwide, the 

median relative change in soil respiration rate per 10 °C rise in temperature (or Q10) was 2.39 (Hamdi et al. 

2013). However a study of Scottish peats (Chapman and Thurlow 1998), which are likely to be more 

representative of the organic soils of our calibration sites, reported Q10 values ranging from 2.2 – 19, with a 

mean of 4.8, while a maximum Q10 of 3.53 was observed for peat cores taken from the UK ECN Moor House 

site under drained conditions (Clark et al. 2009). 

 

In the final model selected here, altitude influences DOC both  as a single term and in a positive interaction 

with PPPG. We first consider its effect in catchments dominated exclusively by better drained soils, i.e. when 

PPPG = 0 (and the interaction term is therefore redundant). Here the model shows DOC concentration and 

flux to increase by a factor of 2.34 over an altitude gradient of 900 – 300 masl - approximately the range 

covered by the calibration sites and equivalent to a gradient in mean annual air temperature of 4.2 – 7.9 °C 

for a mid-latitude UK site (Figure 3).  ECN meteorological data indicates that cumulative solar radiation over 

the growing season (CSRG) (i.e. the total solar radiation over the months of the year when mean air 

temperature exceeds 5°C) increases by a factor of 1.45 over the same altitude gradient (Supplementary 

Information Figure 2). Even if NPP responds proportionally, this alone would be insufficient to explain the 

observed change in DOC with altitude in organo-mineral soil dominated catchments. However, if the 

microbial production of DOC from the organic matter pool generated by NPP is temperature dependent, then 

NPP and temperature dependent decomposition (TDD) might be expected to exert a multiplicative effect. In 

this case the TDD effect required to explain the modelled change in DOC is given by 2.34/1.45 = 1.62, 

equivalent to a Q10 response of 3.7, and therefore broadly consistent with mid-range values reported for 

Scottish peats (Chapman and Thurlow 1998).  Figure 3 demonstrates that the product of CSRG  and TDD 

(Q10 = 3.7) changes with  altitude in a similar exponential manner to that shown by DOC. However it is likely 
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that other altitude-related factors, such as slope, susceptibility to soil freezing, snow accumulation, windspeed 

effects on plant growth, or microbial cycling of nutrients, also contribute to the overall effect, in which case 

the effect of temperature alone would not need to be so pronounced.   

  

In contrast to organo-mineral soils, the modelled response of DOC to declining altitude for catchments 

exclusively covered by wetland soils (i.e. PPPG =100), is far too large to be explained purely by the simple 

product of NPP and TDD, even if Q10 levels were substantially higher for these soils (Figure 4). The model 

predicts no difference between catchments for which PPPG = 0 and PPPG = 1 at an altitude of 690 masl, but 

by 300 masl production is almost five times higher from than the latter  (Figure 4c). Further mechanisms 

contributing to this apparent amplification of DOC export may relate to soil hydrological status, and might 

include: 1) greater accumulation of potentially soluble organic matter carbon in wetland soils;  2) an increase 

in the ratio of organic matter exported as DOC relative to that being respired as CO2 in wetter environments; 

and, 3) effects of water table variation in peats (Clark et al. 2009; Fenner and Freeman 2011; Mitchell and 

McDonald 1992; Toberman et al. 2008) which might be expected to greater at lower altitudes due to lower 

levels of precipitation and greater evaporation.  

 

Hydrological factors may also account for the significant model underestimate for Cottage Hill Syke 

catchment, the only major outlier we have encountered to date (Figure 2 – point R). This peat dominated site 

has by far the smallest catchment (circa 17.4 ha) considered in this study and is heavily gullied. Low pH and 

base cation concentration implies very little contribution from groundwater, while the water table remains 

within 5 cm of the surface for 83% of the time (Holden et al. 2012), implying that run-off is likely to be 

particularly heavily dominated by saturated and overland flow, minimising the potential for retention of DOC 

by the underlying substrata.    

 

The role of catchment sensitivity to acid deposition 

Despite explaining relatively little of the overall variance in logDOC all three hydrochemical terms were 

highly significant in the full model. A negative effect on DOC of acid deposition, as inferred by log [SO4], 

dampened by an interactive effect with [xBC], is consistent with the relationship reported for trends in DOC 
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and these variables across a wide range of sites in northern Europe and North America by Monteith et al. 

(2007). Negative effects of sulphuric acid additions on DOC production in organic and B horizons of soil 

samples taken from a range of UWMN sites have been shown to be greater in soils with lower base saturation 

and higher exchangeable aluminium levels (Clark et al. 2009; Palmer et al. 2013). The coefficient for log 

[SO4] is large relative to between-site variation, suggesting DOC is sensitive to even small changes in sulphur 

deposition.  The negative sign for the individual [xBC] term may reflect the extent to which DOC in 

catchment drainage waters interacts with, and is subsequently retained by, mineral soil horizons. 

 

Potential space-for-time implications 

While our spatial model essentially represents “steady state” relationships between DOC and environmental 

factors, it may also provide some indication of the sensitivity of these systems to future environmental 

change. Medium emissions climate change scenarios projected by UKCP09 for conditions in 2080 relative 

to 1961-1990 predict all parts of the UK to become warmer (Murphy et al. 2009). The main temperature 

increases are forecast for summer, with the greatest increases in mean summer temperatures of 4.2 °C in 

southern England, declining to around 2.5 °C for remoter parts of Scotland. Effects of warming on NPP in 

the uplands should be most dependent on the rate of advance in spring and retreat in autumn of the 

temperature threshold for net production to occur, but given the relatively modest response over a 

considerable altitudinal gradient we show here these effects are unlikely to be substantial. However, a 

projected increase in annual average temperatures of circa 3 °C for the UK as a whole (equivalent in 

temperature terms to a decline in altitude of around 500 m), would be sufficient to increase concentrations 

draining organo-mineral soils on average by circa 150% relative to current levels if decomposition rates were 

to respond to temperature at a rate described by a Q10 of 3.7. For the northern and western UK, negligible 

change is predicted in summer precipitation that dominates the magnitude of wet dry cycling in peats, 

although a forecast increase in winter precipitation could if anything reduce these fluctuations. The  effect of 

soil type on the magnitude of the relationship between altitude and DOC has potential implications for 

catchment sensitivity to future warming and thus requires further investigation.  Over the 20 year duration of 

the UWMN to date, however, there have been no clear trends in either air temperature or precipitation, and 

it should be noted that Zhang et al. (2010) did not detect any change in DOC in lakes in regions of eastern 
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Canada that had experienced two decades of warming. Climatic effects on the long-term DOC trend to date 

are therefore likely to have been small, although effects of inter-annual variability in temperature should be 

detectable.  

           

For the majority of sites we found relatively good agreement between the relationship between log [SO4] and 

DOC measured in individual samples at the calibration sites, and the spatially modelled response of DOC to 

changing [SO4], when all other variables (including [xCa2++xMg2+]) were held constant (Figure 5). However, 

relationships for some peatland dominated sites, i.e., River Etherow, Coneyglen Burn and Troutbeck were 

poor. These sites show a similar curvilinear pattern in the DOC - [SO4] relationship in individual samples to 

the other sites, but the model appears too sensitive to the effect of the [xBC] * log [SO4] interaction term, 

which results in a reversal of the net effect of [SO4] at higher base cation concentrations. Further 

modifications will therefore be necessary to enable prediction of effects of changing deposition on peatland 

systems. Nevertheless, close agreement for the organo-mineral dominated sites provides further strong 

support for the hypothesis that reducing acid deposition has dominated the long-term trend in DOC in this 

region over recent decades (Clark et al. 2010). For these sites the model predicts that the sensitivity of DOC 

to unit declines in surface water [SO4] is increasing as the latter approaches low-to-background levels. 

Although sulphur deposition has fallen substantially over the last two decades, further, relatively small, 

reductions are expected according to current national and international emission abatement policy, and are 

therefore likely to result in further significant increases in DOC at unprecedented rates per unit reduction in 

the acid load. 

 

Certain factors that have been identified elsewhere as potentially influential appeared to be relatively 

unimportant in explaining spatial variation in DOC within our dataset. For example, we were unable to detect 

any systematic differences between sites with significant cover of managed coniferous forest and moorland 

sites. However, any effects of increased interception of sulphur deposition by forest canopies will have been 

taken into account by inclusion of the log[SO4] term. Aside from the effects of enhanced deposition, 

differences in annual inputs of organic matter to the soil, or other factors related to forestry, appear to have 

not been sufficiently marked at this national scale (and given the substantial effect size of the other controls) 



19 

 

to exert a significant effect on the model. We were also unable to detect any fertilising influence of nitrogen 

deposition on DOC. Nitrogen deposition has been identified as a key factor explaining gradients in upland 

floristic diversity across the UK (Henrys et al. 2011; Stevens et al. 2006) and it has been argued that levels 

of NPP in the most polluted upland regions will have also been stimulated, with a consequent effect on DOC 

- an effect that is included in some recent process-based models (Rowe et al. 2014; Tipping et al. 2012).  It 

is possible that nitrogen deposition effects on DOC have been masked by the variable log[SO4] (despite the 

expectation of opposite effects) as S and N deposition are reasonably well correlated spatially. Alternatively 

it is feasible that NPP in upland catchments throughout the regions covered by our dataset is now effectively 

N-saturated resulting in no detectable differential effect.  Whether recovery from acidification, in conjunction 

with other intensifying anthropogenic pressures, is resulting in unprecedented levels of DOC or simply 

reflects a return to pre-industrial levels will require further exploration. 
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Table 1. Physical parameters and mean annual DOC data for the study sites. 

Site no. 

Site latitude longitude 

Mean 

catchment  

altitude  

(masl) 

modelled mean  

annual 

temperature 

(°C) 

modelled  

effective 

precipitation 

(mm yr-1) 

DOC 

concentration  

(1992-2011) 

(mg L-1)  

modelled DOC flux  

(g m-2 yr-1) 

1 Loch Coire nan Arr 57.4171 -5.65186 446 6.08 2838 3.0 8.5 

2 Allt a'Mharcaidh 57.1178 -3.84959 706 4.59 773 3.2 2.4 

3 Allt na Coire nan Con 56.7584 -5.61215 333 6.99 2262 5.6 12.7 

4 Lochnagar 56.9583 -3.23157 914 3.37 1295 1.8 2.4 

5 Loch Chon 56.2122 -4.54755 275 7.54 2099 4.9 10.3 

6 Loch Tinker 56.2282 -4.5099 469 6.35 2179 6.2 13.5 

7 Round Loch of Glenhead 55.0937 -4.43045 377 7.30 2014 4.1 8.2 

8 Loch Grannoch 55.0031 -4.28109 318 7.69 2050 6.1 12.5 

9 Dargall Lane Burn 55.0775 -4.43103 416 7.06 2156 2.3 5.0 

10 Scoat Tarn 54.482 -3.29955 717 5.43 2914 1.6 4.6 

11 Burnmoor Tarn 54.4285 -3.25931 329 7.82 1676 3.0 5.0 

12 River Etherow 53.493 -1.82663 480 7.21 1087 8.2 8.9 

15 Llyn Llagi 53.0149 -4.0153 549 6.95 2420 3.0 7.4 

16 Llyn Cwm Mynach 52.7955 -3.96212 360 8.19 1815 2.6 4.8 

17 Afon Hafren 52.4741 -3.70337 527 7.28 2142 2.5 5.3 

18 Afon Gwy 52.4542 -3.70555 558 7.10 2136 2.5 5.3 

19 Beaghs Burn 55.1005 -6.16357 332 7.57 1210 13.9 16.9 

20 Bencrom River 54.1573 -6.00503 422 7.34 1358 5.4 7.3 

21 Blue Lough 54.1585 -5.96976 459 7.12 1236 4.8 5.9 

22 Coneyglen Burn 54.7393 -7.00599 360 7.52 1120 10.5 11.8 

30 Troutbeck 54.695 -2.38784 600 6.07 1434 9.8 14.0 
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Table 2a  Multivariate logistic regression model statistics for the most parsimonious (lowest AIC) model 

explaining spatial variation in log10 20 year (1992 – 2011) mean DOC concentration. 

Predictor Coefficient SE Coefficient P value 

Constant 2.747 0.378 <0.001 

Altitude(m) (ALT) -0.00062 0.0001 <0.001 

Effective precipitation (mm) (PE) -0.000112 0.000024 0.001 

Proportion peat + peaty gley soil (PPPG) 1.217 0.158 <0.001 

ALT * PPPG -0.00182 0.00035 <0.001 

log [sulphate] (µeq L-1) (log[SO4])  -1.051 0.186 <0.001 

[Non-marine divalent base cation] (µeq L-1) ([xBC]) -0.0093 0.0021 0.001 

Log[SO4] * [xBC] 0.00542 0.0011 <0.001 

 

S = 0.0488 

R2 = 97.7%  Adjusted R2 = 96.5% 

   

 

Table 2b  Multivariate logistic regression model statistics explaining spatial variation in log10 DOC concentration 

for the period 2009-2013 based on the same parameters selected for the most parsimonious model (see Table 2a). 

Note data for Loch Coire nan Arr, monitoring of which ceased in 2007, has been replaced with data for nearby 

Loch Coire Fionnaraich. 

  

Predictor Coefficient SE Coefficient P value 

Constant 2.089 0.371 <0.001 

Altitude(m) (ALT) -0.00053 0.0001 <0.001 

Effective precipitation (mm) (PE) -0.000091 0.00003 0.010 

Proportion peat + peaty gley soil (PPPG) 1.126 0.218 <0.001 

ALT * PPPG -0.00172 0.00047 0.003 

log [sulphate] (µeq L-1) (log[SO4])  -0.715 0.181 0.002 

[Non-marine divalent base cation] (µeq L-1) [xBC] -0.0040 0.0012 0.006 

Log[SO4] * [xBC] 0.00629 0.0022 0.013 

 

S = 0.0632 

R2 = 95.9%  Adjusted R2 = 93.7% 

 

 

 

 

. 
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Figure Legends 

 

Figure 1 Comparison of long term observed mean annual DOC concentration of UWMN/ECN sites and predicted 

DOC concentration based on leave-one out cross validation. Site numbers according to Table 1. 1:1 line = feint 

grey;  linear regression line = black.  
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Figure 2  Relationship between measured mean DOC concentrations for upland lake and stream sites in Scotland 

and Wales (sampled repeatedly over the course of one year only during the early-mid 1990s) and concentrations 

predicted by the final model on the basis of long-term modelled effective precipitation, mean catchment altitude, 

proportion of peat and peaty gley soil in terrestrial catchment, and mean sulphate and non-marine divalent base 

cation concentration for the year of sampling. A list of sites and locations are provided in Supplementary 

Information (Table 3) . 

 

  



31 

 

 

    

Figure 3 Modelled effect of altitude on DOC concentration, or flux, for UK upland catchments devoid of peats or 

peaty gley soils, relative to levels at 900 masl (solid line). Other lines represent: the modelled effects of altitude 

on cumulative growing season solar radiation over the growing season (CSRG), assumed to be a surrogate for net 

primary production (filled squares); modelled temperature dependent decomposition (TDD) assuming a Q10 of 

3.7 (empty squares); and, the product of the above effects of CSRG and TDD (dotted line). 
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Figure 4  a-b) Modelled change in DOC concentration with altitude for hypothetical sets of sites representing peat 

or peaty gley dominated catchments (black lines) and other upland soil types (grey lines).  a) poorly buffered and 

acidified sites with rainfall, and sulphate and non-marine divalent cation concentration equivalent to the Round 

Loch of Glenhead in Galloway. b) strongly buffered non-acidified sites with rainfall, and sulphate and non-marine 

divalent cation concentration equivalent to the Trout Beck in the northern Pennines. c) The effect of altitude on 

the ratio of concentrations between the two soil type end-members (i.e. PPPG=1: PPPG=0) regardless of other 

factors. Dotted line = unity. 
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Figure 5  

Change in mean DOC concentration (mg L-1) with changing sulphate concentration (µeq L-1) at the study sites estimated by the final model with all other parameters held constant (line), 

superimposed on a scatter plot of DOC concentration against sulphate concentration in individual water samples taken from these sites over the last two decades. 
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Supplementary Information Table 1 

Variables included within candidate multivariate logistic regression models to explain spatial 

variability in long-term mean dissolved organic carbon concentration.   

Variable Abbreviation  Units 

Log10 Mean annual DOC 
concentration 

[DOC] mg C L-1 

Log10 Mean annual DOC flux DOC flux g C m-2 yr-1 

Altitude ALT Metres above sea level 

Total annual effective 
precipitation 

PE Mm yr-1 

Mean annual temperature MAT °C 

Mean annual reduced nitrogen 
deposition (5 km resolution) 

RED_N_DEP keq ha-1 yr-1 

Mean annual oxidised nitrogen 
deposition (5 km resolution) 

OX_N_DEP keq ha-1 yr-1 

Total annual nitrogen 
deposition (5 km resolution) 

TOT_N_DEP  

Mean annual  sulphur 
deposition (5 km resolution) 

S_DEP keq ha-1 yr-1 

% of catchments covered by 
coniferous forestry 

%FOREST % 

Proportion of catchment 
occupied by brown podsolic 
soils 

BPS proportion 

Proportion of catchment 
occupied by Gley podsols 

GP proportion 

Proportion of catchment 
occupied by humic-sandy gley 
soils 

HSG proportion 

Proportion of catchment 
occupied by Peat soils 

PEAT proportion 

Proportion of catchment 
occupied by Podsols 

POD proportion 

Proportion of catchment 
occupied by Rankers 

RANK proportion 

Proportion of catchment 
occupied by Sandy gley soils 

SG proportion 

Proportion of catchment 
occupied by peaty gley soils 

PG proportion 

Proportion of catchment 
occupied by Stagnopodsols 

SP proportion 

Proportion of catchment 
occupied by peat + peaty gley 
soil 

PPPG proportion 

Log10 Mean annual sulphate 
concentration  

Log [SO4] µeq L-1  

Divalent non-marine base 
cation concentration 

[xBC] µeq L-1 
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Supplementary Information Figure 1. Seasonal variation in mean monthly air temperature and mean monthly solar radiation measured at 

Environmental Change Network terrestrial monitoring sites. Solar radiation curves (yellow) fitted using a sin function with peak centred on the 

summer solstice. Air temperature curves fitted using a GAM function. Horizontal grey lines correspond with an air temperature of 5 °C. Vertical 

grey lines provide period of year air temperature exceeds 5°C and primary production is assumed to occur.  Integration of the area between the 

the pairs of vertical grey lines, bounded by the solar radiation curve provides the cumulative annual solar radiation over the hypothetical growing 

season (CSRG).      
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Supplementary Information Figure 2. 

Relationship between modelled cumulative solar radiation over the growing season (CSRG) and the altitude of Environmental Change Network 

meteorological stations. A GAM function (blue line), is used to represent the response of CSRG  to changing altitude in the Discussion section. 
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