175 research outputs found

    A Successful Broad-band Survey for Giant Lya Nebulae I: Survey Design and Candidate Selection

    Full text link
    Giant Lya nebulae (or Lya "blobs") are likely sites of ongoing massive galaxy formation, but the rarity of these powerful sources has made it difficult to form a coherent picture of their properties, ionization mechanisms, and space density. Systematic narrow-band Lya nebula surveys are ongoing, but the small redshift range covered and the observational expense limit the comoving volume that can be probed by even the largest of these surveys and pose a significant problem when searching for such rare sources. We have developed a systematic search technique designed to find large Lya nebulae at 2<z<3 within deep broad-band imaging and have carried out a survey of the 9.4 square degree NOAO Deep Wide-Field Survey (NDWFS) Bootes field. With a total survey comoving volume of ~10^8 h^-3_70 Mpc^3, this is the largest volume survey for Lya nebulae ever undertaken. In this first paper in the series, we present the details of the survey design and a systematically-selected sample of 79 candidates, which includes one previously discovered Lya nebula.Comment: Accepted to ApJ after minor revision; 25 pages in emulateapj format; 18 figures, 3 table

    Efficiency determination of resistive plate chambers for fast quasi-monoenergetic neutrons

    Full text link
    Composite detectors made of stainless steel converters and multigap resistive plate chambers have been irradiated with quasi-monoenergetic neutrons with a peak energy of 175MeV. The neutron detection efficiency has been determined using two different methods. The data are in agreement with the output of Monte Carlo simulations. The simulations are then extended to study the response of a hypothetical array made of these detectors to energetic neutrons from a radioactive ion beam experiment.Comment: Submitted to Eur.Phys.J. A; upgraded version correcting some typos and updating ref.

    The PANDA GEM-based TPC Prototype

    Full text link
    We report on the development of a GEM-based TPC prototype for the PANDA experiment. The design and requirements of this device will be illustrated, with particular emphasis on the properties of the recently tested GEM-detector, the characterization of the read-out electronics and the development of the tracking software that allows to evaluate the GEM-TPC data.Comment: submitted to NIMA 4 pages, 6 picture

    Underspecification, Inherent Nondeterminism and Probability in Sequence Diagrams

    Get PDF
    Abstract. Nondeterminism in specifications may be used for at least two different purposes. One is to express underspecification, which means that the specifier for the same environment behavior allows several alterna-tive behaviors of the specified component and leaves the choice between these to those responsible for implementing the specification. In this case a valid implementation will need to implement at least one, but not nec-essarily all, alternatives. The other purpose is to express inherent nonde-terminism, which means that a valid implementation needs to reflect all alternatives. STAIRS is an approach to the compositional and incremental development of sequence diagrams supporting underspecification as well as inherent nondeterminism. Probabilistic STAIRS builds on STAIRS and allows probabilities to be included in the specifications. Underspecifica-tion with respect to probabilities is also allowed. This paper investigates the use of underspecification, inherent nondeterminism and probability in sequence diagrams, the relationships between these concepts, and how these are expressed in STAIRS and probabilistic STAIRS.

    A large ungated TPC with GEM amplification

    Get PDF
    A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost . The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are presented in this paper. We further describe the support infrastructure such as gas, cooling and slow control. Finally, we report on the operation of the GEM-TPC in the FOPI experiment, and describe the calibration procedures which are applied to achieve the design performance of the device.Peer reviewe

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system
    corecore