608 research outputs found

    Alexander's Law in Patients with Acute Vestibular Tone Asymmetry—Evidence for Multiple Horizontal Neural Integrators

    Get PDF
    Alexander's law (AL) states that the slow-phase velocity of spontaneous nystagmus of peripheral vestibular origin is dependent on horizontal gaze position, with greater velocity when gaze is directed in the fast-phase direction. AL is thought to be a compensatory reaction resulting from adaptive changes in the horizontal ocular motor neural integrator. Until now, only horizontal eye movements have been investigated with respect to AL. Because spontaneous nystagmus usually includes vertical and torsional components, we asked whether horizontal gaze changes would have an effect on the 3D drift of spontaneous nystagmus and, thus, on the vertical/torsional neural integrator. We hypothesized that AL reduces all nystagmus components proportionally. Moreover, we questioned the classical theory of a single bilaterally organized horizontal integrator and searched for nonlinearities of AL implying a network of multiple integrators. Using dual scleral search coils, we measured AL in 17 patients with spontaneous nystagmus. Patients followed a pulsed laser dot at eye level jumping in 5° steps along the horizontal meridian between 25° right and left in otherwise complete darkness. AL was observed in 15 of 17 patients. Whereas individual patients typically showed a change of 3D-drift direction at different horizontal eye positions, the average change in direction was not different from zero. The strength of AL (= rate of change of total velocity with gaze position) correlated with nystagmus slow-phase velocity (Spearman's rho = 0.5; p < 0.05) and, on average, did not change the 3D nystagmus drift direction. In general, eye velocity did not vary linearly with eye position. Rather, there was a stronger dependence of velocity on horizontal position when subjects looked in the slow-phase direction compared to the fast-phase direction. We conclude that the theory of a simple leak of a single horizontal neural integrator is not sufficient to explain all aspects of A

    Vestibular and auditory deficits in Fabry disease and their response to enzyme replacement therapy

    Get PDF
    Progressive hearing (pHL) and vestibular (pVL) loss are frequent deficits in Fabry disease (FD). Recently, enzyme replacement therapy (ERT) with human α-galactosidase A has become available. Here, we investigate the association between pHL and pVL in FD and their ERT responses. Pure tone audiometry (PTA) and head impulse testing (HIT) were administered at baseline in 47 patients (25 male, 18-0 y; 22 female, 17-4 y), of whom 24 also received caloric irrigation (CI). Of the 47 patients, 38 (24 male) were tested both before and during ERT (follow- up ≀60 months). ERT consisted of agalsidase alfa infusions. At baseline, pHL was present in 88% of males and 86% of females. Over all tested frequencies (range: 0.5- kHz), pHL was significantly (two-way ANOVA: p 0.05). We conclude that pHL and pVL prevalences are similar in FD. To detect pVL, HIT is more sensitive than CI. We speculate that pHL and pVL emerge from lesions within the vestibulocochlear labyrinth, because no specific patterns of vestibulo-cochlear deficits were observed, as expected if lesions were more proximal along the inferior or superior branch of the vestibulo-cochlear nerve or labyrinthine artery. Finally, ERT stabilizes auditory and even improves vestibular functio

    Generation of Lasso Peptide-Based ClpP Binders

    Get PDF
    The Clp protease system fulfills a plethora of important functions in bacteria. It consists of a tetradecameric ClpP barrel holding the proteolytic centers and two hexameric Clp-ATPase rings, which recognize, unfold, and then feed substrate proteins into the ClpP barrel for proteolytic degradation. Flexible loops carrying conserved tripeptide motifs protrude from the Clp-ATPases and bind into hydrophobic pockets (H-pockets) on ClpP. Here, we set out to engineer microcin J25 (MccJ25), a ribosomally synthesized and post-translationally modified peptide (RiPP) of the lasso peptide subfamily, by introducing the conserved tripeptide motifs into the lasso peptide loop region to mimic the Clp-ATPase loops. We studied the capacity of the resulting lasso peptide variants to bind to ClpP and affect its activity. From the nine variants generated, one in particular (12IGF) was able to activate ClpP from Staphylococcus aureus and Bacillus subtilis. While 12IGF conferred stability to ClpP tetradecamers and stimulated peptide degradation, it did not trigger unregulated protein degradation, in contrast to the H-pocket-binding acyldepsipeptide antibiotics (ADEPs). Interestingly, synergistic interactions between 12IGF and ADEP were observed

    Dual tasking under compromised visual and somatosensory input in elderly fallers and non-fallers

    Full text link
    Background: Performance of additional tasks disturbs postural control in elderly. It is unknown, however, how postural control is affected in elderly fallers and non-fallers in a reduced sensory situation. Objective: To compare differences between single and dual tasking in three test conditions; (1) no-vision, (2) under reduced somatosensory information and (3) with a combination of both conditions. Design: An observational cohort study with participants assigned to a 12-month pretest fall assessment and a postural balance assessment. Methods: Fifteen independently living elderly participated (77.5 ± 7.0 [63-87] years). Falls were pre-assessed with a 1- year monthy “fall calendar”. Postural control was analyzed by means of a force platform. Participants were standing quiet (first task) while counting backwards (second task). A 2-factor (group x condition) ANOVA was performed at p<.05. Differences of postural (DTCp) and cognitive dual task costs (DTCc) between test conditions were analyzed (one-way ANOVA). Results: The analysis showed significant group (fallers/non-fallers) and condition effects. Post hoc analyses indicated that the postural control variables were significantly different during the concurrent reduced vision and somatosensory information. Dual task costs showed a significant difference between normal (N) and the combined condition (NV+RP) in non-fallers. Conclusion: The combination of reduced visual and somatosensory information causes a larger disturbance of postural stability compared with the reduction of visual or somatosensory information alone. Non-fallers seem to have no threats to the postural control stability in this combined reduced sensory situation. They reduce their postural control, which leaves them enough resources to compensate for the reduced sensory information

    Offspring pay sooner, parents pay later:Experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival

    Get PDF
    Introduction: Life-history theory predicts that organisms trade off survival against reproduction. However, the time scales on which various consequences become evident and the physiology mediating the cost of reproduction remain poorly understood. Yet, explaining not only which mechanisms mediate this trade-off, but also how fast or slow the mechanisms act, is crucial for an improved understanding of life-history evolution. We investigated three time scales on which an experimental increase in body mass could affect this trade-off: within broods, within season and between years. We handicapped adult skylarks (Alauda arvensis) by attaching extra weight during first broods to both adults of a pair. We measured body mass, immune function and return rates in these birds. We also measured nest success, feeding rates, diet composition, nestling size, nestling immune function and recruitment rates.Results: When nestlings of first broods fledged, parent body condition had not changed, but experimental birds experienced higher nest failure. Depending on the year, immune parameters of nestlings from experimental parents were either higher or lower than of control nestlings. Later, when parents were feeding their second brood, the balance between self-maintenance and nest success had shifted. Control and experimental adults differed in immune function, while mass and immune function of their nestlings did not differ. Although weights were removed after breeding, immune measurements during the second brood had the capacity to predict return rates to the next breeding season. Among birds that returned the next year, body condition and reproductive performance a year after the experiment did not differ between treatment groups.Conclusions: We conclude that the balance between current reproduction and survival shifts from affecting nestlings to affecting parents as the reproductive season progresses. Furthermore, immune function is apparently one physiological mechanism involved in this trade-off. By unravelling a physiological mechanism underlying the trade-offs between current and future reproduction and by demonstrating the different time scales on which it acts, our study represents an important step in understanding a central theory of life-history evolution.</p

    Rotational vertebral artery syndrome: 3D kinematics of nystagmus suggest bilateral labyrinthine dysfunction

    Get PDF
    Whether the rotational vertebral artery syndrome (RVAS), consisting of attacks of vertigo, nystagmus and tinnitus elicited by head-rotation induced compression of the dominant vertebral artery (VA), reflects ischemic dysfunction of uni- or bilateral peripheral or central vestibular structures, is still debated. We report on a patient with bilateral high-grade carotid stenoses, in whom rightward headrotation led to RVAS symptoms including a prominent nystagmus. Three-dimensional kinematic analysis of the nystagmus pattern, recorded with search coils, revealed major downbeat nystagmus with minor horizontal and torsional components. Magnetic resonance angiography demonstrated a hypoplastic right VA terminating in the posterior inferior cerebellar artery, a dominant left VA, and a hypoplastic P1-segment of the left posterior cerebral artery (PCA) that was supplied by the left posterior communicating artery (PCoA). The right PCA and both anterior inferior cerebellar arteries were supplied by the basilar artery. The right PCoA originated from the right internal carotid artery. Color duplex sonography showed severe reduction of diastolic blood flow velocities in the left VA during RVAS attacks. The nystagmus pattern can be best explained by vectorial addition of 3D sensitivity vectors of stimulated right and left anterior and horizontal semicircular canals with slightly stronger stimulation on the left side. We hypothesize that in RVAS, compression of dominant VA leads to acute vertebrobasilar insufficiency with bilateral, but asymmetric ischemia of the superior labyrinth. With regard to RVAS etiology, our case illustrates a type of pure vascular RVAS. Severity of attacks markedly decreased after successful bilateral carotid endarterectom

    Visual contribution to postural stability: Interaction between target fixation or tracking and static or dynamic large-field stimulus

    Full text link
    Stationary visual information has a stabilizing effect on posture, whereas moving visual information is destabilizing. We compared the influence of a stationary or moving fixation point to the influence of stationary or moving large-field stimulation, as well as the interaction between a fixation point and a large-field stimulus. We recorded body sway in 20 healthy subjects who were fixating a stationary or oscillating dot (vertical or horizontal motion, 1/3Hz, +/-12 degrees amplitude, distance 96cm). In addition, a large-field random dot pattern (extension: approximately 80x70 degrees ) was stationary, moving or absent. Visual fixation of a stationary dot in darkness did not reduce antero-posterior (AP) sway compared to the situation in total darkness, but slightly reduced lateral sway at frequencies below 0.5Hz. In contrast, fixating a stationary dot on a stationary large-field pattern reduced both AP and lateral body sway at all frequencies (0.1-2Hz). Ocular tracking of the oscillating dot caused a peak in body sway at 1/3Hz, i.e. the stimulus frequency, but there was no influence of large-field stimulus at this frequency. A stationary large-field pattern, however, reduced AP and lateral sway at frequencies between 0.1 and 2Hz when subjects tracked a moving dot, compared to tracking in darkness. Our results demonstrate that a stationary large-field pattern has a stabilizing effect in all conditions, independent of whether the eyes are fixing on a stationary target or tracking a moving target

    Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life.

    Get PDF
    Investment in immune defences is predicted to covary with a variety of ecologically and evolutionarily relevant axes, with pace of life and environmental antigen exposure being two examples. These axes may themselves covary directly or inversely, and such relationships can lead to conflicting predictions regarding immune investment. If pace of life shapes immune investment then, following life history theory, slow-living, arid zone and tropical species should invest more in immunity than fast-living temperate species. Alternatively, if antigen exposure drives immune investment, then species in antigen-rich tropical and temperate environments are predicted to exhibit higher immune indices than species from antigen-poor arid locations. To test these contrasting predictions we investigated how variation in pace of life and antigen exposure influence immune investment in related lark species (Alaudidae) with differing life histories and predicted risks of exposure to environmental microbes and parasites. We used clutch size and total number of eggs laid per year as indicators of pace of life, and aridity, and the climatic variables that influence aridity, as correlates of antigen abundance. We quantified immune investment by measuring four indices of innate immunity. Pace of life explained little of the variation in immune investment, and only one immune measure correlated significantly with pace of life, but not in the predicted direction. Conversely, aridity, our proxy for environmental antigen exposure, was predictive of immune investment, and larks in more mesic environments had higher immune indices than those living in arid, low-risk locations. Our study suggests that abiotic environmental variables with strong ties to environmental antigen exposure can be important correlates of immunological variation.Financial support came from the Schure-Beijerinck-Poppings Fonds (to NPCH and AH), BirdLife Netherlands (to BIT), NSF grant IBN 0212587 (to JBW), and VENI and VIDI grants from the Netherlands Organisation for Scientific Research (to KDM and BIT).This is the accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs00442-014-3136-y
    • 

    corecore