View metadata, citation and similar papers at core.ac.uk

-

P
brought to you by i CORE

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Environmental proxies of antigen exposure explain variation in immune investment better

than indices of pace-of-life

Nicholas P.C. Horrocks*" 2, Arne Hegemannl, Stéphane Ostrowski®, Henry Ndithia™*

Mohammed Shobrak®, Joseph B. Williams®, Kevin D. Matson® and B. Irene Tieleman®

!Animal Ecology Group, Centre for Evolutionary and Ecological Studies, University of
Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands

’Behavioural Ecology Group, Department of Zoology, University of Cambridge, Downing
Street, Cambridge, CB2 3EJ, United Kingdom

3Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, USA
*Department of Ornithology, National Museums of Kenya, PO Box 40658, Nairobi, Kenya
5Biology Department, Science College, Taif University, PO Box 888, Taif 21974, Saudi Arabia
®*Department of Evolution, Ecology and Organismal Biology, Ohio State University,

Columbus, OH 43210, USA

*Author for correspondence (nh415@cam.ac.uk)

Author Contributions: NPCH and BIT conceived the study. All authors assisted with sample
collection. NPCH and AH analysed the samples. NPCH analysed the data and wrote the

manuscript; other authors provided editorial advice.

provided by Apollo


https://core.ac.uk/display/42338355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

ABSTRACT

Investment in immune defences is predicted to co-vary with a variety of ecologically and
evolutionarily relevant axes, with pace-of-life and environmental antigen exposure being
two examples. These axes may themselves co-vary directly or inversely, and such
relationships can lead to conflicting predictions regarding immune investment. If pace-of-life
shapes immune investment then, following life history theory, slow-living, arid zone and
tropical species should invest more in immunity than fast-living temperate species.
Alternatively, if antigen exposure drives immune investment, then species in antigen-rich
tropical and temperate environments are predicted to exhibit higher immune indices than
species from antigen-poor arid locations. To test these contrasting predictions we
investigated how variation in pace-of-life and antigen exposure influence immune
investment in related lark species (Alaudidae) with differing life histories and predicted risks
of exposure to environmental microbes and parasites. We used clutch size and total number
of eggs laid year™ as indicators of pace-of-life, and aridity, and the climatic variables that
influence aridity, as correlates of antigen abundance. We quantified immune investment by
measuring four indices of innate immunity. Pace-of-life explained little of the variation in
immune investment, and only one immune measure correlated significantly with pace-of-
life, but not in the predicted direction. Conversely, aridity, our proxy for environmental
antigen exposure, was predictive of immune investment, and larks in more mesic
environments had higher immune indices than those living in arid, low-risk locations. Our
study suggests that abiotic environmental variables with strong ties to environmental

antigen exposure can be important correlates of immunological variation.
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INTRODUCTION

Explanations for variation in immune investment have often focused on the identification of
evolutionary and ecological axes along which immune defences might co-vary. For example,
ecological immunologists have exploited differences in pace-of-life to explain variation in
immune defences. Limited resources and the costs associated with immunity suggest that
immune investment must be counter-balanced against investment in other costly
physiological processes such as growth and reproduction (Sheldon and Verhulst 1996;
IImonen et al. 2000; Lochmiller and Deerenberg 2000; Norris and Evans 2000; Hegemann et
al. 2013). Species at the fast end of the pace-of-life axis, with short lifespans and high
reproductive rates, may allocate more of their limited resources to reproduction, and fewer
to self maintenance activities such as immune defence. Conversely, ‘slow-living’ species that
develop slowly, have low extrinsic mortality, and low reproductive rates, can prioritise self-
maintenance activities and invest more heavily in immunity (Roff 1992; Stearns 1992;
Ricklefs and Wikelski 2002).

Variation in exposure to environmental antigens represents another axis that might
explain immune investment. Immune systems provide clear benefits in terms of protection
against exogenous threats, including fitness-reducing micro- and macro-parasites. Immune
investment might be greater when the risk of infection is higher (Tschirren and Richner
2006; Horrocks et al. 2011a), which could be associated with environment, time, and other
ecological factors (Piersma 1997; Mgller 1998; Guernier et al. 2004, Hegemann et al. 2012,
2013; Horrocks et al. 2012a, 2012b). For example, levels of environmental moisture shape
endo- and ecto-parasitic communities, which show decreased prevalence, abundance and
diversity in more arid environments (Little and Earlé 1995; Moyer et al. 2002; Valera et al.

2003; Guernier et al 2004; Jex et al. 2007; Guerra et al. 2010; Froeschke et al. 2010; Pullan
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and Brooker 2012). Combined with reduced moisture, the increased solar radiation and
temperature extremes associated with arid environments also act to limit microbial
assemblages (Tong and Lighthart 1997; Saranathan and Burtt 2007; Burrows et al. 2009;
Tang 2009; Bachar et al. 2010). If aridity is considered as a proxy for the level of antigenic
exposure (Horrocks et al. 2014) then the requirement for immune investment should be
greatest in cool, wet and humid environments where parasites and microbes are more likely
to be encountered. This suggests a negative correlation between aridity and immune
function.

Disentangling the relative contributions of pace-of-life and antigen exposure to
immune variation is difficult because both axes may themselves co-vary (Horrocks et al.
2011a). Where pace-of-life and antigen exposure co-vary positively, predictions about
immune investment coincide, even if the causal factor responsible for immunological
variation is not clear. For example, relative to temperate birds, those in the tropics might
invest more in immunity due to their slower pace-of-life (Martin Il et al. 2006; Wiersma et
al. 2007), because of increased exposure to environmental antigens such as parasites
(Mgller 1998; Guernier et al. 2004), or perhaps as a result of both factors. Where pace-of-
life and antigen exposure co-vary negatively, conflicting predictions can arise. For example,
the slow pace-of-life of desert-living birds (Tieleman et al. 2004) predicts strong investment
in immune defences, similar to birds in the tropics, even though deserts and the tropics may
pose contrasting risks in terms of exposure to antigens (Horrocks et al. 2011a). Investigating
the drivers and correlates of immune variation in diverse environments requires careful
consideration of study system characteristics. If the goal is to separate the contributions of
pace-of-life and antigen exposure, then these two factors must be as un-confounded as

possible.
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We investigated how immune investment is influenced by pace-of-life and antigen
exposure - expressed as environmental aridity - by studying related species of songbirds
(larks; Alaudidae) that inhabit environments differing in aridity. Larks are ideally suited to
this study because of their ecological similarities in different environments (del Hoyo et al.
2004), and because environmental moisture is already known to influence exposure to
antigens in birds. Bacterial loads in nests, and infestation of nestlings by parasitic fly larvae
correlate negatively with precipitation (Berger et al. 2003; Antoniazzi et al. 2011), while
haematozoan infections and prevalence of lice and bacteria on feathers are reduced under
more arid conditions (Little and Earlé 1995; Moyer et al. 2002; Valera et al. 2003;
Saranathan and Burtt 2007; Bush et al. 2009; Malenke et al. 2011; Horrocks et al. 2012b).
Soil microbial abundance also correlates negatively with precipitation (Bachar et al. 2010;
Drenovsky et al. 2010; Blankinship et al. 2011; Pasternak et al. 2013; Serna-Chavez et al.
2013) and soil microbes contaminate birds and their nests (Shawkey et al. 2005; Ruiz de
Castafieda et al. 2011; Potter et al. 2013).

We measured lark species living in hot, hyper-arid deserts and cooler, wetter, mesic
locations, as well as those from cold desert and tropical locations. Cold desert larks have
clutch sizes typical of a fast pace-of-life yet live in an environment predicted to pose a low
risk of antigen exposure. Tropical larks display life-history traits consistent with a slow pace-
of-life yet live in potentially high antigen exposure settings (Tables 1 and 2). For the
remaining lark species in our study pace-of-life increases with decreasing aridity, a finding
that is unaffected by phylogeny (Tieleman et al. 2003; 2004). This means that the
environments most associated with species exhibiting a slow pace-of-life (which may select
for immune investment) are the same environments that present the lowest exposure to

environmental antigens (which may select against immune investment). These contrasts
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make larks particularly suited for teasing apart the roles of life history and environmental
antigen exposure in shaping investment in immune defences.

We assessed immune investment by measuring circulating levels of four non-specific
immune indices that any environmental antigen that has breached defensive barriers such
as the skin or mucosa might encounter (Janeway et al. 2004). Haptoglobin and
ovotransferrin are acute phase proteins with immunomodulatory properties that counter
microbial challenges and limit microbial growth by directly sequestering iron (Xie et al. 2002;
Arredouani et al. 2003). Natural antibodies opsonize invading microorganisms to facilitate
phagocytosis and activate the complement system, which leads to cell lysis (Ochsenbein and
Zinkernagel 2000). We used clutch size and number of eggs laid year™ as indicators of pace-
of-life (Saether 1998; Ricklefs 2000), and aridity, precipitation and mean ambient
temperature as proxies for environmental antigen exposure. We predicted that if immune
investment is driven by pace-of-life, then slow-living, arid zone and tropical larks should
invest relatively more in immune defences than fast-living species from temperate and cold-
arid environments. If antigen exposure is more important for determining investment in
immune defences, then we predicted that immune indices should be lowest in lark
populations from arid locations, and be higher in temperate and tropical larks living in

environments with greater abundance of microbes and macro-parasites.

MATERIALS AND METHODS
Study populations, sampling, and indicators of pace-of-life
We captured larks of 12 species in 11 climatically distinct locations during breeding and non-

breeding periods from 2006 to 2009 (23 populations in total; Table 1). We collected <300yl
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blood from the brachial vein of each bird and stored it on ice until processing by
centrifugation to separate plasma and cellular fractions. The plasma was then frozen and
stored at -20°C until it was used in immune assays. We gathered data on mean clutch size
and number of eggs laid year (mean clutch size x mean number of clutches laid year;
Table 2) directly from our own study populations and from Tieleman et al. (2004), Cramp
(1988), del Hoyo et al. (2004) and Hegemann et al. (2012, 2013). All birds were sampled

under licence from the relevant authorities.

Climatic variables and aridity index

We obtained high-resolution (0.5 x 0.5 degree — approximately 55 x 55 km) gridded data on
climatic variables for the period 1901-2009 from the Climatic Research Unit time series
dataset (CRU TS 3.1; Harris et al. 2013). For each bird-sampling location we extracted mean
annual values for precipitation (P, mm) and temperature (T, °C). We used these climatic
variables to calculate de Martonne’s aridity index Ay (P / T + 10; de Martonne 1926). Ay and
climatic variables for each lark population are shown in Table 1. Low values of Ay, indicate

arid conditions, whereas higher values are associated with increasingly mesic environments.

Immune assays

We determined haptoglobin concentrations (mg ml™) using a functional assay that
measures the haem-binding capacity of plasma (TP801; Tri-Delta Diagnostics, NJ, USA),
following the ‘manual method’ instructions provided by the manufacturer and with
incubation at 30°C for five minutes (Matson et al. 2012). We measured ovotransferrin
concentrations (mg ml™) according to Horrocks et al. (2011b). Three of the 23 populations

were not measured due to blood volume limitations (Table 2). We quantified natural
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antibody-mediated agglutination titres and complement-mediated lysis titres against rabbit

red blood cells (B-0009D, Harlan, UK), according to the assay of Matson et al. (2005).

Statistical analyses

We calculated mean values per population (i.e. per species per location) for each immune
index and used these values to conduct regression analyses to investigate relationships
between immune indices and life-history variables and aridity. Since our aridity index is a
compound variable, we also ran separate models testing immune indices against each of the
primary climatic variables precipitation and temperature. To account for potential non-
independence among species due to common ancestry we used a phylogenetic generalised
least squares (pgls) approach (Freckleton et al. 2002), simultaneously estimating maximum
likelihood values of the parameter A to test for phylogenetic signal in the model residuals
(Pagel’s lambda; Pagel 1999). A value of A = 0 indicates no phylogenetic signal, whereas A =1
suggests that trait evolution is consistent with a strong effect of phylogeny. We based our
phylogeny on the phylogenetic tree of larks (Alstrom et al. 2013). For the seven species with
multiple sampled populations we added branches to the tree for each population to create
polytomies, with the branch length for each population within a species set to zero. We
found no evidence for phylogenetic signal in any of our datasets: A never differed
significantly from zero and was always significantly different from one. Setting all branch
lengths to one did not change this finding. Therefore, we present all results and figures
based on simple linear regression models (ordinary least squares, ols; Freckleton 2009;
Revell 2010), with species and geographically distinct populations treated as independent
points. Because sample size varied among species and populations (Table 1), we weighted

regression models by the square root of the number of individuals sampled in each
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population (Sokal and Rohlf 1995). Since some species or populations were only sampled
during one period (breeding or non-breeding; Table 1) we ran analyses using restricted
datasets containing values per period, as well as with the entire dataset of all values. The
results of these analyses were qualitatively similar and so we only present results based on
the entire dataset. To disentangle the roles of pace-of-life and environmental antigen
exposure in shaping immune investment, these factors should not be correlated. This was
the case in our dataset: pace-of-life indicators and aridity were not significantly correlated
(clutch size vs. Ay: P = 0.57, r = -0.12; number of eggs laid year™ vs. Ay: P = 0.16, r = 0.31).

All statistical analyses were conducted using R 2.15.2 (R Core Team 2012).

RESULTS

Relationships between immune indices and pace-of-life parameters were non-significant
and generally weak (Table 3; Fig. 1). The notable exception to this was the relationship
between number of eggs laid year™ and agglutination titres (Table 3; Fig. 1f).

Lark populations consistently exhibited lower immune defences in more arid
locations (Fig. 2). These negative correlations with aridity were significant for haptoglobin
concentrations and lysis titres, and approached significance for agglutination titres (Table 3;
Fig. 2). Haptoglobin concentrations and lysis titres were also positively and significantly
correlated with mean annual precipitation (Table 3; Fig. 2). Ovotransferrin concentrations
showed no relationship with aridity or mean annual precipitation (Figs 2d-e). Lysis titres
correlated significantly and positively with mean annual temperature: larks from warmer

locations had higher lysis titres (Table 3; Fig. 21). All other immune indices correlated

10
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negatively with mean annual temperature but these relationships were not significant

(Table 3; Fig. 2).

DISCUSSION

Contrary to the pace-of-life hypothesis, slow-living lark species did not invest more heavily
in immune defences than their faster-living counterparts. Thus, our study adds to the list of
publications that report no evidence for this hypothesis (Cutrera et al. 2010; Horrocks et al.
2012a; Versteegh et al. 2012, Palacios et al. 2013), and contradicts those studies that
provide at least some support for an association between pace-of-life and immune
investment (Tieleman et al. 2005; Martin et al. 2006; Lee et al. 2008; Sparkman and Palacios
2009; Previtali et al. 2012). Taxonomic and methodological differences between studies,
including measurement of different immune components and the use of different proxies
for pace-of-life, may explain some of this variation. However, even within a single immune
index and taxonomic group, interpretation of immune investment in relation to pace-of-life
is not straightforward. The sole significant relationship in our study that might suggest a link
between pace-of-life and immune investment was between agglutination titres and number
of eggs laid year™. However, this correlation was positive, and contrary to the pace-of-life
hypothesis this suggests that lark species with a faster pace-of-life have higher agglutination
ability. This finding contradicts earlier work showing greater agglutination ability in tropical
species with a slower pace-of-life (Lee et al. 2008). It also conflicts with Versteegh et al.
(2012), who found no relationship between agglutination titres and pace-of-life when
studying stonechat subspecies in a common garden set-up. Natural antibody levels correlate

positively with adaptive antibody responses (Parmentier et al. 2004) and these conflicting

11
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patterns might arise because natural antibodies, although usually considered an innate
immune defence, straddle the boundary between innate and adaptive immunity (Caroll and
Prodeus 1998; Ochsenbein and Zinkernagel 2000). Studies that measure purely adaptive
immune defences, such as induction of specific antibody responses, are needed to test this
possibility. More generally, the equivocal nature of the evidence linking immune investment
and pace-of-life suggests that further exploration of this topic is required.

In agreement with the antigen exposure hypothesis (Horrocks et al. 2011a),
haptoglobin concentrations and lysis titres decreased with increasing aridity and were
highest in populations of larks from less arid locations where exposure to abundant
immunological challenges is expected to be higher (Little and Earlé 1995; Moyer et al. 2002;
Valera et al. 2003; Guernier et al. 2004; Jex et al. 2007; Tang 2009; Bachar et al. 2010;
Guerra et al. 2010; Froeschke et al. 2010). Agglutination titres showed a similar, but non-
significant trend and only ovotransferrin concentrations showed no relationship with aridity.
This might relate to the iron binding and transport function of ovotransferrin, which, aside
from its anti-microbial and immunomodulatory properties, make ovotransferrin important
for vascularisation and nerve and muscle growth in the developing embryo (Giansanti et al.
2012).

In addition to links with aridity, we found significant positive associations between
haptoglobin concentrations and lysis titres and precipitation, and between lysis titres and
temperature. Previous authors have linked the risk of antigen exposure to climatic factors
(Guernier et al. 2004; Gage et al. 2008; Guerra et al. 2010) and other abiotic environmental
variables (e.g. salinity; Figuerola 1999; Piersma 1997; Mendes et al. 2005). Our study
extends this approach by showing that immune indices that are related to infection risk also

correlate with abiotic environmental variation. This demonstrates that abiotic measures can
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serve as useful proxies for antigenic exposure when direct biotic measurements are
unavailable. Even so, it is important to recognise that other factors might influence immune
investment, and may also co-vary with abiotic environmental variation. For example,
physiological differences between birds along our aridity gradient, such as variation in
metabolic rate (Tieleman et al. 2003) might influence immune responses, independent of
any effect of antigen exposure. Temperature-constrained activity budgets (Tieleman and
Williams 2002) and the reduced productivity associated with arid environments (Del Grosso
et al. 2008; Serna-Chavez et al. 2013) could both restrict food availability in arid-living larks,
leading to a resource trade-off that negatively impacts immune function. However, food
availability might also be expected to influence clutch size and number of clutches year™
(Tieleman et al. 2004; Lepage and Lloyd 2004), yet neither pace-of-life indicator correlated
significantly with aridity. Earlier work showed that lark species in hyper-arid regions
encountered lower microbial abundances than more mesic, temperate-living larks, and had
correspondingly lower immune indices (Horrocks et al. 2012a). This supports our argument
that aridity is a good proxy for risk of antigen exposure and consequently immune
investment. Future work that takes a similar approach and focuses on direct measurement
of relevant antigens will shed additional light on the associations we have identified
between aridity, risk of antigen exposure, and immune defence. Combined with
experimental studies, this work is also necessary to determine whether patterns of
correlation between antigen exposure and immune responses reflect evolved responses to
an antigen-rich environment or are simply a reflection of current exposure to antigens.
Comparative studies, both within and among species and environments, represent a
powerful approach for disentangling the roles of pace-of-life and antigen exposure in

shaping immune defences and for understanding immune defence variation in more general
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ecological and evolutionary terms. By employing a study system in which pace-of-life
variation is uncoupled from variation in antigen exposure, we demonstrated that
investment in innate immune defences might be related more to the likelihood of
encountering an immunological challenge than to pace-of-life. Including relevant measures
of environmental antigens and associated exposure risk in ecoimmunology studies will

provide exciting opportunities for advancing our understanding of immunological variation.
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TABLES

Table 1. Sample size (n), sampling period (breeding (B), non-breeding (NB), or sampled in both periods (both)), geographic origin and habitat

description, and climatic variables for 12 species of lark. The climatic variables are the aridity index Ay (P / T + 10), and mean annual values for

precipitation (P) and temperature (T). A lower value of Ay, indicates a more arid environment.

# species n sampling latitude longitude country habitat Am P (mm) T(°C)
a hoopoe lark Alaemon alaudipes 61 both 22° 20’ N 41°44° E Saudi Arabia hot desert 2.29 81.19 25.38
b 4 B 19°53' N  16°18' W Mauritania hot desert 2.01 69.33 24.55
¢ bar-tailed desert lark Ammomanes cincturus 56 both 22°20'N 41°44° E Saudi Arabia  hot desert 2.29 81.19 25.38
d black-crowned finchlark Eremopterix nigriceps 14 B 21°15’'N 40° 42’ E Saudi Arabia hot desert 6.43 200.20 21.12
e 19 both 22°20'N 41°44° E Saudi Arabia  hot desert 2.29 81.19 25.38
f crested lark Galerida cristata 4 B 21° 15N 40° 42" E Saudi Arabia  hot desert 6.43 200.20 21.12
g 18 both 22° 20’ N 41°44° E Saudi Arabia hot desert 2.29 81.19 25.38
h 2 NB 34°22' N 62° 11’ E Afghanistan  cold desert 8.66 226.44 16.14
i Dunn’s lark Eremalauda dunni 35 both 22°20'N 41°44° E Saudi Arabia  hot desert 2.29 81.19 25.38
j  short-toed lark Calandrella brachydactyla 2 NB 22° 16’ N 41° 45’ E Saudi Arabia hot desert 2.29 81.19 25.38
k  bimaculated lark Melanocorypha bimaculata 6 NB 36°54’ N 66° 53’ E Afghanistan  cold desert 7.96 214.88 16.98
I 14 NB 34° 54’ N 67°11'E Afghanistan  cold desert 26.92 389.80 4.48
m 7 NB 34°22' N 62° 11’ E Afghanistan  cold desert 8.66 226.44 16.14
n 6 B 36°43' N 67° 06’ E Afghanistan  cold desert 9.50 243.17 15.61
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538

Table 1 continued.

# species n sampling latitude longitude country habitat Am P (mm) T(°C)
o calandra lark Melanocorypha calandra NB 36°54’ N 66° 53’ E Afghanistan  cold desert 7.96 214.88 16.98
p 6 NB 34° 54’ N 67°11'E Afghanistan  cold desert 26.92 389.80 4.48
q 11 NB 34°22' N 62° 11’ E Afghanistan  cold desert 8.66 226.44 16.14
r red-capped lark Calandrella cinerea 5 B 0°51’S 36°25'E Kenya tropical 19.64 593.98 20.25
s 8 B 0°34’S 36°29'E Kenya tropical 33.05 839.22 15.39
t  rufous-naped lark Mirafra africana 4 B 0°48’S 36°32'E Kenya tropical 19.64 593.98 20.25
u 2 B 0°34’S 36°29'E Kenya tropical 33.05 839.22 15.39
v skylark Alauda arvensis 144 both 52°56’ N 6° 18 E Netherlands  temperate 40.50 777.01 9.19
w  woodlark Lullula arborea 60 both 52°56’ N 6° 18 E Netherlands  temperate 40.50 777.01 9.19
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539  Table 2. Mean clutch size and number of clutches per year, concentrations of haptoglobin and ovotransferrin, and agglutination and lysis titres

540  for 23 populations of 12 lark species. Values for life-history variables are from this study and from the literature (data source column).

clutches haptoglobin  ovotransferrin  agglutination

# species clutch size vear (mg mi™) (mg m) (titre) lysis (titre) data source*
a hoopoe lark 2.99 1 0.28 7.47 5.85 0.86 2
b 2.88 1 0.25 7.41 4.50 1.63 3
¢ bar-tailed desert lark 3.24 1 0.29 9.08 6.13 0.38 2
d black-crowned finchlark 2.57 1 0.49 5.43 7.03 1.52 3,4
e 2.00 1 0.27 9.11 5.83 0.58 3,4
f  crested lark 4.15 2 0.25 15.28 6.31 1.94 2
g 4.15 2 0.25 5.18 6.24 0.53 2
h 4.75 2 0.07 11.20 5.25 0.00 2,3
i Dunn’s lark 2.88 1 0.49 9.76 6.65 1.63 2
j  short-toed lark 3.50 2 0.41 9.18 11.00 1.00 2
k  bimaculated lark 3.96 1.5 0.19 - 5.17 2.08 3
| 3.96 1.5 0.33 14.53 4.90 2.63 3
m 3.96 1.5 0.11 12.72 4.21 0.21 3
n 3.96 1.5 0.17 - 7.63 4.88 3
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543 Table 2 continued.

# species clutch size ct’::?fs h?;t:i?ll))m ov?:r:zr:::ﬁ;rm aggl(t:;ctl:\:)tlon lysis (titre) data source*
o calandra lark 4.20 2 0.08 - 7.25 3.58 2

p 4.20 2 0.06 6.01 6.46 1.75 2

q 4.20 2 0.07 9.78 5.90 1.25 2

r red-capped lark 1.83 2 0.15 9.10 4.50 0.13 1

s 1.89 2 0.57 7.25 5.17 2.42 1

t  rufous-naped lark 2.11 1 0.74 9.08 6.31 3.69 1,4

u 2.00 1 0.19 10.20 5.63 3.63 1,4

v skylark 3.56 3.5 0.48 - 7.82 2.26 1,5

w  woodlark 4.02 2.5 0.46 9.41 7.20 2.21 1

544  * 1 0Own data; 2 Tieleman et al. (2004); 3 Cramp (1988); 4 del Hoyo et al. (2004); 5 Hegemann et al. (2012, 2013).
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551

Table 3. Results of linear models examining relationships between immune indices of 23

populations of 12 lark species in relation to pace-of-life proxies and to climatic proxies of

environmental antigen exposure. P values < 0.05 are shown in bold.

response variable explanatory variable F P
haptoglobin (mg ml™) mean clutch size F12=2.86 0.11
total eggs year™ 0.21 0.66
aridity index Ay 4.90 0.038
mean annual precipitation (mm) 5.79 0.025
mean annual temperature (°C) 0.31 0.59
ovotransferrin (mg ml™)  mean clutch size F117=4.00 0.06
total eggs year™ 1.74 0.21
aridity index Ay, 0.53 0.72
mean annual precipitation (mm) 0.00 0.95
mean annual temperature (°C) 2.79 0.11
agglutination (titre) mean clutch size F12=1.00 0.33
total eggs year™ 8.34 0.009
aridity index Ay 3.14 0.09
mean annual precipitation (mm) 2.31 0.14
mean annual temperature (°C) 1.11 0.31
lysis (titre) mean clutch size F12=0.23 0.64
total eggs year™ 1.59 0.22
aridity index Ay, 6.58 0.018
mean annual precipitation (mm) 7.03 0.015
mean annual temperature (°C) 8.32 0.009
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FIGURES

Figure 1. Haptoglobin (a-b) and ovotransferrin (c-d) concentrations and agglutination (e-f)
and lysis (g-h) titres as a function of mean clutch size and number of eggs year* in 23
populations of 12 lark species. Squares: hot desert larks; circles: cold desert larks;

triangles: tropical larks; diamonds: temperate larks.

Figure 2. Haptoglobin (a-c) and ovotransferrin (d-f) concentrations and agglutination (g-i)
and lysis (j-1) titres as a function of de Martonne’s aridity index Ay, mean annual
precipitation (mm) and mean annual temperature (°C) in 23 populations of 12 lark species
measured along an environmental aridity gradient. Ay, increases with decreasing aridity of
the environment. Squares: hot desert larks; circles: cold desert larks; triangles: tropical

larks; diamonds: temperate larks.
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