35 research outputs found

    GALAXY: A new hybrid MOEA for the Optimal Design of Water Distribution Systems

    Get PDF
    This is the final version of the article. Available from American Geophysical Union via the DOI in this record.The first author would like to appreciate the financial support given by both the University of Exeter and the China Scholarship Council (CSC) toward the PhD research. We also appreciate the three anonymous reviewers, who help improve the quality of this paper substantially. The source code of the latest versions of NSGA-II and ε-MOEA can be downloaded from the official website of Kanpur Genetic Algorithms Laboratory via http://www.iitk.ac.in/kangal/codes.shtml. The description of each benchmark problem used in this paper, including the input file of EPANET and the associated best-known Pareto front, can be accessed from the following link to the Centre for Water Systems (http://tinyurl.com/cwsbenchmarks/). GALAXY can be accessed via http://tinyurl.com/cws-galaxy

    A hybrid, auto-adaptive, and rule-based multi-agent approach using evolutionary algorithms for improved searching

    Full text link
    Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.Izquierdo Sebastián, J.; Montalvo Arango, I.; Campbell, E.; Pérez García, R. (2015). A hybrid, auto-adaptive, and rule-based multi-agent approach using evolutionary algorithms for improved searching. Engineering Optimization. 1-13. doi:10.1080/0305215X.2015.1107434S113Becker, U., & Fahrmeir, L. (2001). Bump Hunting for Risk: a New Data Mining Tool and its Applications. Computational Statistics, 16(3), 373-386. doi:10.1007/s001800100073Bouguessa, M., & Shengrui Wang. (2009). Mining Projected Clusters in High-Dimensional Spaces. IEEE Transactions on Knowledge and Data Engineering, 21(4), 507-522. doi:10.1109/tkde.2008.162Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1-2), 103-112. doi:10.1016/j.chemolab.2004.12.011CHONG, I., & JUN, C. (2008). Flexible patient rule induction method for optimizing process variables in discrete type. Expert Systems with Applications, 34(4), 3014-3020. doi:10.1016/j.eswa.2007.05.047Cole, S. W., Galic, Z., & Zack, J. A. (2003). Controlling false-negative errors in microarray differential expression analysis: a PRIM approach. Bioinformatics, 19(14), 1808-1816. doi:10.1093/bioinformatics/btg242FRIEDMAN, J. H., & FISHER, N. I. (1999). Statistics and Computing, 9(2), 123-143. doi:10.1023/a:1008894516817Geem, Z. W. (2006). Optimal cost design of water distribution networks using harmony search. Engineering Optimization, 38(3), 259-277. doi:10.1080/03052150500467430Goncalves, L. B., Vellasco, M. M. B. R., Pacheco, M. A. C., & Flavio Joaquim de Souza. (2006). Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 36(2), 236-248. doi:10.1109/tsmcc.2004.843220Hastie, T., Friedman, J., & Tibshirani, R. (2001). The Elements of Statistical Learning. Springer Series in Statistics. doi:10.1007/978-0-387-21606-5Chih-Ming Hsu, & Ming-Syan Chen. (2009). On the Design and Applicability of Distance Functions in High-Dimensional Data Space. IEEE Transactions on Knowledge and Data Engineering, 21(4), 523-536. doi:10.1109/tkde.2008.178Hwang, S.-F., & He, R.-S. (2006). A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics, 20(1), 7-21. doi:10.1016/j.aei.2005.09.001Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Javadi, A. A., Farmani, R., & Tan, T. P. (2005). A hybrid intelligent genetic algorithm. Advanced Engineering Informatics, 19(4), 255-262. doi:10.1016/j.aei.2005.07.003Jin, X., Zhang, J., Gao, J., & Wu, W. (2008). Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II. Journal of Zhejiang University-SCIENCE A, 9(3), 391-400. doi:10.1631/jzus.a071448Johns, M. B., Keedwell, E., & Savic, D. (2014). Adaptive locally constrained genetic algorithm for least-cost water distribution network design. Journal of Hydroinformatics, 16(2), 288-301. doi:10.2166/hydro.2013.218Jourdan, L., Corne, D., Savic, D., & Walters, G. (2005). Preliminary Investigation of the ‘Learnable Evolution Model’ for Faster/Better Multiobjective Water Systems Design. Evolutionary Multi-Criterion Optimization, 841-855. doi:10.1007/978-3-540-31880-4_58Kamwa, I., Samantaray, S. R., & Joos, G. (2009). Development of Rule-Based Classifiers for Rapid Stability Assessment of Wide-Area Post-Disturbance Records. IEEE Transactions on Power Systems, 24(1), 258-270. doi:10.1109/tpwrs.2008.2009430Kang, D., & Lansey, K. (2012). Revisiting Optimal Water-Distribution System Design: Issues and a Heuristic Hierarchical Approach. Journal of Water Resources Planning and Management, 138(3), 208-217. doi:10.1061/(asce)wr.1943-5452.0000165Keedwell, E., & Khu, S.-T. (2005). A hybrid genetic algorithm for the design of water distribution networks. Engineering Applications of Artificial Intelligence, 18(4), 461-472. doi:10.1016/j.engappai.2004.10.001Kehl, V., & Ulm, K. (2006). Responder identification in clinical trials with censored data. Computational Statistics & Data Analysis, 50(5), 1338-1355. doi:10.1016/j.csda.2004.11.015Liu, X., Minin, V., Huang, Y., Seligson, D. B., & Horvath, S. (2004). Statistical Methods for Analyzing Tissue Microarray Data. Journal of Biopharmaceutical Statistics, 14(3), 671-685. doi:10.1081/bip-200025657Marchi, A., Dandy, G., Wilkins, A., & Rohrlach, H. (2014). Methodology for Comparing Evolutionary Algorithms for Optimization of Water Distribution Systems. Journal of Water Resources Planning and Management, 140(1), 22-31. doi:10.1061/(asce)wr.1943-5452.0000321Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2McClymont, K., Keedwell, E., Savić, D., & Randall-Smith, M. (2013). A general multi-objective hyper-heuristic for water distribution network design with discolouration risk. Journal of Hydroinformatics, 15(3), 700-716. doi:10.2166/hydro.2012.022McClymont, K., Keedwell, E. C., Savić, D., & Randall-Smith, M. (2014). Automated construction of evolutionary algorithm operators for the bi-objective water distribution network design problem using a genetic programming based hyper-heuristic approach. Journal of Hydroinformatics, 16(2), 302-318. doi:10.2166/hydro.2013.226Michalski, R. S. (2000). Machine Learning, 38(1/2), 9-40. doi:10.1023/a:1007677805582Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Nguyen, V. V., Hartmann, D., & König, M. (2012). A distributed agent-based approach for simulation-based optimization. Advanced Engineering Informatics, 26(4), 814-832. doi:10.1016/j.aei.2012.06.001Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., … Chan-Hilton, A. (2010). State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. Journal of Water Resources Planning and Management, 136(4), 412-432. doi:10.1061/(asce)wr.1943-5452.0000053Onwubolu, G. C., & Babu, B. V. (2004). New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39930-8Pelikan, M., Goldberg, D. E., & Lobo, F. G. (2002). Computational Optimization and Applications, 21(1), 5-20. doi:10.1023/a:1013500812258Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., & Kollat, J. B. (2013). Evolutionary multiobjective optimization in water resources: The past, present, and future. Advances in Water Resources, 51, 438-456. doi:10.1016/j.advwatres.2012.01.005Shang, W., Zhao, S., & Shen, Y. (2009). A flexible tolerance genetic algorithm for optimal problems with nonlinear equality constraints. Advanced Engineering Informatics, 23(3), 253-264. doi:10.1016/j.aei.2008.09.001Vrugt, J. A., & Robinson, B. A. (2007). Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences, 104(3), 708-711. doi:10.1073/pnas.0610471104Vrugt, J. A., Robinson, B. A., & Hyman, J. M. (2009). Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces. IEEE Transactions on Evolutionary Computation, 13(2), 243-259. doi:10.1109/tevc.2008.924428Xie, X.-F., & Liu, J. (2008). Graph coloring by multiagent fusion search. Journal of Combinatorial Optimization, 18(2), 99-123. doi:10.1007/s10878-008-9140-6Xiao-Feng Xie, & Jiming Liu. (2009). Multiagent Optimization System for Solving the Traveling Salesman Problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 489-502. doi:10.1109/tsmcb.2008.2006910Zheng, F., Simpson, A. R., & Zecchin, A. C. (2013). A decomposition and multistage optimization approach applied to the optimization of water distribution systems with multiple supply sources. Water Resources Research, 49(1), 380-399. doi:10.1029/2012wr013160Zheng, F., Simpson, A. R., & Zecchin, A. C. (2014). Coupled Binary Linear Programming–Differential Evolution Algorithm Approach for Water Distribution System Optimization. Journal of Water Resources Planning and Management, 140(5), 585-597. doi:10.1061/(asce)wr.1943-5452.000036

    Finding Common Ground When Experts Disagree: Robust Portfolio Decision Analysis

    Full text link

    Extending AεSεH from Many-objective to Multi-objective Optimization

    No full text

    Low cost satellite constellations for nearly continuous global coverage

    No full text

    A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control

    No full text
    Globally, the pressures of expanding populations, climate change, and increased energy demands are motivating significant investments in re-operationalizing existing reservoirs or designing operating policies for new ones. These challenges require an understanding of the tradeoffs that emerge across the complex suite of multi-sector demands in river basin systems. This study benchmarks our current capabilities to use Evolutionary Multi-Objective Direct Policy Search (EMODPS), a decision analytic framework in which reservoirs' candidate operating policies are represented using parameterized global approximators (e.g., radial basis functions) then those parameterized functions are optimized using multi-objective evolutionary algorithms to discover the Pareto approximate operating policies. We contribute a comprehensive diagnostic assessment of modern MOEAs' abilities to support EMODPS using the Conowingo reservoir in the Lower Susquehanna River Basin, Pennsylvania, USA. Our diagnostic results highlight that EMODPS can be very challenging for some modern MOEAs and that epsilon dominance, time-continuation, and auto-adaptive search are helpful for attaining high levels of performance. The ε-MOEA, the auto-adaptive Borg MOEA, and ε-NSGAII all yielded superior results for the six-objective Lower Susquehanna benchmarking test case. The top algorithms show low sensitivity to different MOEA parameterization choices and high algorithmic reliability in attaining consistent results for different random MOEA trials. Overall, EMODPS poses a promising method for discovering key reservoir management tradeoffs; however algorithmic choice remains a key concern for problems of increasing complexity
    corecore