5,565 research outputs found
High-Resolution Imaging of Molecular Gas and Dust in the Antennae (NGC 4038/39): Super Giant Molecular Complexes
We present new aperture synthesis CO maps of the Antennae (NGC 4038/39)
obtained with the Caltech Millimeter Array. These sensitive images show
molecular emission associated with the two nuclei and a partial ring of star
formation to the west of NGC 4038, as well as revealing the large extent of the
extra-nuclear region of star formation (the ``overlap region''), which
dominates the CO emission from this system. The largest molecular complexes
have masses of 3-6x10^8 M_sun, typically an order of magnitude larger than the
largest structures seen to date in more quiescent galaxy disks. The extremely
red luminous star clusters identified previously with HST are well-correlated
with the CO emission, which supports the conclusion that they are highly
embedded young objects rather than old globular clusters. There is an excellent
correlation between the CO emission and the 15 micron emission seen with ISO,
particularly for the brightest regions. The most massive complexes in the
overlap region have similar [NeIII]/[NeII] ratios, which implies that all these
regions are forming many massive stars. However, only the brightest
mid-infrared peak shows strong, rising continuum emission longward of 10
microns, indicative of very small dust grains heated to high temperatures by
their proximity to nearby luminous stars. Since these grains are expected to be
removed rapidly from the immediate environment of the massive stars, it is
possible that this region contains very young (< 1 Myr) sites of star
formation. Alternatively, fresh dust grains could be driven into the sphere of
influence of the massive stars, perhaps by the bulk motions of two giant
molecular complexes. The kinematics and morphology of the CO emission in this
region provide some support for this second scenario.Comment: Accepted for publication in The Astrophysical Journal, 13 pages, 5
figures, higher quality color images available at
http://www.astro.cornell.edu/staff/vassilis/papers/ngc4038_co.ps.g
Eddy genesis and manipulation in plane laminar shear flow
Eddy formation and presence in a plane laminar shear flow configuration consisting of two infinitely long plates orientated parallel to each other is investigated theoretically. The upper plate, which is planar, drives the flow; the lower one has a sinusoidal profile and is fixed. The governing equations are solved via a full finite element formulation for the general case and semi-analytically at the Stokes flow limit. The effects of varying geometry (involving changes in the mean plate separation or the amplitude and wavelength of the lower plate) and inertia are explored separately. For Stokes flow and varying geometry, excellent agreement between the two methods of solution is found. Of particular interest with regard to the flow structure is the importance of the clearance that exists between the upper plate and the tops of the corrugations forming the lower one. When the clearance is large, an eddy is only present at sufficiently large amplitudes or small wavelengths.
However, as the plate clearance is reduced, a critical value is found which triggers the formation of an eddy in an otherwise fully attached flow for any finite amplitude and arbitrarily large wavelength. This is a precursor to the primary eddy to be expected in the lid-driven cavity flow which is formed in the limit of zero clearance between the plates. The influence of the flow driving mechanism is assessed by comparison with corresponding solutions for the case of gravity-driven fluid films flowing over an undulating substrate. When inertia is present, the flow generally becomes asymmetrical. However, it is found that for large mean plate separations the flow local to the lower plate becomes effectively decoupled from the inertia dominated overlying flow if the wavelength of the lower plate is sufficiently small. In such cases the local flow retains its symmetry. A local Reynolds number based on the wavelength is shown to be useful in characterising these large-gap flows. As the mean plate separation is reduced, the form of the asymmetry caused by inertia changes, and becomes strongly dependent on the plate separation. For lower plate wavelengths which do not exhibit a cinematically induced secondary eddy, an inertially induced secondary eddy can be created if the mean plate separation is sufficiently small and the global Reynolds number sufficiently large
Recommended from our members
Interpretation of ambiguous situations: evidence for a dissociation between social and physical threat in Williams syndrome
There is increasing evidence that Williams syndrome (WS) is associated with elevated anxiety that is non-social in nature, including generalised anxiety and fears. To date very little research has examined the cognitive processes associated with this anxiety. In the present research, attentional bias for non-social threatening images in WS was examined using a dot-probe paradigm. Participants were 16 individuals with WS aged between 13 and 34 years and two groups of typically developing controls matched to the WS group on chronological age and attentional control ability respectively. The WS group exhibited a significant attention bias towards threatening images. In contrast, no bias was found for group matched on attentional control and a slight bias away from threat was found in the chronological age matched group. The results are contrasted with recent findings suggesting that individuals with WS do not show an attention bias for threatening faces and discussed in relation to neuroimaging research showing elevated amygdala activation in response to threatening non-social scenes in WS
A Large Solid Angle Study of Pion Absorption on He3
Measurements have been made of pi+ absorption on He3 at T_pi+ = 118, 162, and
239 MeV using the Large Acceptance Detector System (LADS). The nearly 4pi solid
angle coverage of this detector minimizes uncertainties associated with
extrapolations over unmeasured regions of phase space. The total absorption
cross section is reported. In addition, the total cross section is divided into
components in which only two or all three nucleons play a significant role in
the process. These are the first direct measurements of the total and three
nucleon absorption cross sections.Comment: 8 pages, LaTeX. 3 figures, anonymous ftp MITLNS.MIT.EDU, cd LADS.
Submitted to PRL. PSI-PR-94-11 (Paul Scherrer Institute) and LNS 94-56 (MIT
Lab. for Nucl. Sci.
The Herschel Exploitation of Local Galaxy Andromeda (HELGA). I: Global far-infrared and sub-mm morphology
We have obtained Herschel images at five wavelengths from 100 to 500 micron
of a ~5.5x2.5 degree area centred on the local galaxy M31 (Andromeda), our
nearest neighbour spiral galaxy, as part of the Herschel guaranteed time
project "HELGA". The main goals of HELGA are to study the characteristics of
the extended dust emission, focusing on larger scales than studied in previous
observations of Andromeda at an increased spatial resolution, and the obscured
star formation. In this paper we present data reduction and Herschel maps, and
provide a description of the far-infrared morphology, comparing it with
features seen at other wavelengths. We use high--resolution maps of the atomic
hydrogen, fully covering our fields, to identify dust emission features that
can be associated to M31 with confidence, distinguishing them from emission
coming from the foreground Galactic cirrus. Thanks to the very large extension
of our maps we detect, for the first time at far-infrared wavelengths, three
arc-like structures extending out to ~21, ~26 and ~31 kpc respectively, in the
south-western part of M31. The presence of these features, hosting ~2.2e6 Msol
of dust, is safely confirmed by their detection in HI maps. Overall, we
estimate a total dust mass of ~5.8e7 Msol, about 78% of which is contained in
the two main ring-like structures at 10 and 15 kpc, at an average temperature
of 16.5 K. We find that the gas-to-dust ratio declines exponentially as a
function of the galacto-centric distance, in agreement with the known
metallicity gradient, with values ranging from 66 in the nucleus to ~275 in the
outermost region. [Abridged]Comment: 15 Pages, 9 Figures. Accepted for publication in Astronomy and
Astrophysics. A high resolution version of the paper can be found at
http://wazn.ugent.be/jfritz/HelgaI_final.pd
Star cluster formation and star formation: the role of environment and star-formation efficiencies
“The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0088-5By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.Peer reviewe
Dust grain growth in the interstellar medium of 5<z<6.5 quasars
We investigate whether stellar dust sources i.e. asymptotic giant branch
(AGB) stars and supernovae (SNe) can account for dust detected in 5<z<6.5
quasars (QSOs). We calculate the required dust yields per AGB star and per SN
using the dust masses of QSOs inferred from their millimeter emission and
stellar masses approximated as the difference between the dynamical and the H_2
gas masses of these objects. We find that AGB stars are not efficient enough to
form dust in the majority of the z>5 QSOs, whereas SNe may be able to account
for dust in some QSOs. However, they require very high dust yields even for a
top-heavy initial mass function. This suggests additional non-stellar dust
formation mechanism e.g. significant dust grain growth in the interstellar
medium of at least three out of nine z>5 QSOs. SNe (but not AGB stars) may
deliver enough heavy elements to fuel this growth.Comment: A&A, accepted. 5 pages, 2 figures, 2 table
Hydrothermal dolomitization of basinal deposits controlled by a synsedimentary fault system in Triassic extensional setting, Hungary
Dolomitization of relatively thick carbonate successions occurs via an effective fluid circulation mechanism, since the replacement process requires a large amount of Mg-rich fluid interacting with the CaCO3 precursor. In the western end of the Neotethys, fault-controlled extensional basins developed during the Late Triassic spreading stage. In the Buda Hills and Danube-East blocks, distinct parts of silica and organic matter-rich slope and basinal deposits are dolomitized. Petrographic, geochemical, and fluid inclusion data distinguished two dolomite types: (1) finely to medium crystalline and (2) medium to coarsely crystalline. They commonly co-occur and show a gradual transition. Both exhibit breccia fabric under microscope. Dolomite texture reveals that the breccia fabric is not inherited from the precursor carbonates but was formed during the dolomitization process and under the influence of repeated seismic shocks. Dolomitization within the slope and basinal succession as well as within the breccia zones of the underlying basement block is interpreted as being related to fluid originated from the detachment zone and channelled along synsedimentary normal faults. The proposed conceptual model of dolomitization suggests that pervasive dolomitization occurred not only within and near the fault zones. Permeable beds have channelled the fluid towards the basin centre where the fluid was capable of partial dolomitization. The fluid inclusion data, compared with vitrinite reflectance and maturation data of organic matter, suggest that the ascending fluid was likely hydrothermal which cooled down via mixing with marine-derived pore fluid. Thermal gradient is considered as a potential driving force for fluid flow
Precise measurement of the top quark mass in the dilepton channel at D0
We measure the top quark mass (mt) in ppbar collisions at a center of mass
energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events,
where l denotes an electron, a muon, or a tau that decays leptonically. The
data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0
detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat)
+- 2.4(syst) GeV, which is in agreement with the current world average mt =
173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the
dilepton channel.Comment: 7 pages, 4 figure
Search for a Narrow ttbar Resonance in ppbar Collisions at sqrt{s}=1.96 TeV
We report a search for a narrow ttbar resonance that decays into a
lepton+jets final state based on an integrated luminosity of 5.3/fb of
proton-antiproton collisions at sqrt{s}=1.96 TeV collected by the D0
Collaboration at the Fermilab Tevatron Collider. We set upper limits on the
production cross section of such a resonance multiplied by its branching
fraction to ttbar which we compare to predictions for a leptophobic topcolor Z'
boson. We exclude such a resonance at the 95% confidence level for masses below
835 GeV.Comment: 7 pages, 3 figures, submitted to Physical Review Letter
- …
