325 research outputs found

    Coastal sea level monitoring in the Mediterranean and Black seas

    Get PDF
    Employed for over a century, the traditional way of monitoring sea level variability by tide gauges – in combination with modern observational techniques like satellite altimetry – is an inevitable ingredient in sea level studies over the climate scales and in coastal seas. The development of the instrumentation, remote data acquisition, processing, and archiving in the last decades has allowed the extension of the applications to a variety of users and coastal hazard managers. The Mediterranean and Black seas are examples of such a transition – while having a long tradition of sea level observations with several records spanning over a century, the number of modern tide gauge stations is growing rapidly, with data available both in real time and as a research product at different time resolutions. As no comprehensive survey of the tide gauge networks has been carried out recently in these basins, the aim of this paper is to map the existing coastal sea level monitoring infrastructures and the respective data availability. The survey encompasses a description of major monitoring networks in the Mediterranean and Black seas and their characteristics, including the type of sea level sensors, measuring resolutions, data availability, and existence of ancillary measurements, altogether collecting information about 240 presently operational tide gauge stations. The availability of the Mediterranean and Black seas sea level data in the global and European sea level repositories has been also screened and classified following their sampling interval and level of quality check, pointing to the necessity of harmonization of the data available with different metadata and series in different repositories. Finally, an assessment of the networks' capabilities for their use in different sea level applications has been done, with recommendations that might mitigate the bottlenecks and ensure further development of the networks in a coordinated way, a critical need in the era of human-induced climate changes and sea level rise.En prens

    Differential Development of Human Brain White Matter Tracts

    Get PDF
    Neuroscience is increasingly focusing on developmental factors related to human structural and functional connectivity. Unfortunately, to date, diffusion-based imaging approaches have only contributed modestly to these broad objectives, despite the promise of diffusion-based tractography. Here, we report a novel data-driven approach to detect similarities and differences among white matter tracts with respect to their developmental trajectories, using 64-direction diffusion tensor imaging. Specifically, using a cross-sectional sample comprising 144 healthy individuals (7 to 48 years old), we applied k-means cluster analysis to separate white matter voxels based on their age-related trajectories of fractional anisotropy. Optimal solutions included 5-, 9- and 14-clusters. Our results recapitulate well-established tracts (e.g., internal and external capsule, optic radiations, corpus callosum, cingulum bundle, cerebral peduncles) and subdivisions within tracts (e.g., corpus callosum, internal capsule). For all but one tract identified, age-related trajectories were curvilinear (i.e., inverted ‘U-shape’), with age-related increases during childhood and adolescence followed by decreases in middle adulthood. Identification of peaks in the trajectories suggests that age-related losses in fractional anisotropy occur as early as 23 years of age, with mean onset at 30 years of age. Our findings demonstrate that data-driven analytic techniques may be fruitfully applied to extant diffusion tensor imaging datasets in normative and neuropsychiatric samples

    Asymmetry, sex differences and age-related changes in the white matter in the healthy elderly: a tract-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemispherical asymmetry, sex differences and age-related changes have been reported for the human brain. Meanwhile it was still unclear the presence of the asymmetry or sex differences in the human brain occurred whether as a normal development or as consequences of any pathological changes. The aim of this study was to investigate hemispherical asymmetry, sex differences and age-related changes by using a tract-based analysis in the nerve bundles.</p> <p>Methods</p> <p>40 healthy elderly subjects underwent magnetic resonance diffusion tensor imaging, and we calculated fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values along the major white matter bundles.</p> <p>Results</p> <p>We identified hemispherical asymmetry in the ADC values for the cingulate fasciculus in the total subject set and in males, and a sex difference in the FA values for the right uncinate fasciculus. For age-related changes, we demonstrated a significant increase in ADC values with advancing age in the right cingulum, left temporal white matter, and a significant decrease in FA values in the right superior longitudinal fasciculus.</p> <p>Conclusion</p> <p>In this study, we found hemispherical asymmetry, sex differences and age-related changes in particular regions of the white matter in the healthy elderly. Our results suggest considering these differences can be important in imaging studies.</p

    Cortical Thinning in Patients with Recent Onset Post-Traumatic Stress Disorder after a Single Prolonged Trauma Exposure

    Get PDF
    Most of magnetic resonance imaging (MRI) studies about post-traumatic stress disorder (PTSD) focused primarily on measuring of small brain structure volume or regional brain volume changes. There were rare reports investigating cortical thickness alterations in recent onset PTSD. Recent advances in computational analysis made it possible to measure cortical thickness in a fully automatic way, along with voxel-based morphometry (VBM) that enables an exploration of global structural changes throughout the brain by applying statistical parametric mapping (SPM) to high-resolution MRI. In this paper, Laplacian method was utilized to estimate cortical thickness after automatic segmentation of gray matter from MR images under SPM. Then thickness maps were analyzed by SPM8. Comparison between 10 survivors from a mining disaster with recent onset PTSD and 10 survivors without PTSD from the same trauma indicates cortical thinning in the left parietal lobe, right inferior frontal gyrus, and right parahippocampal gyrus. The regional cortical thickness of the right inferior frontal gyrus showed a significant negative correlation with the CAPS score in the patients with PTSD. Our study suggests that shape-related cortical thickness analysis may be more sensitive than volumetric analysis to subtle alteration at early stage of PTSD

    Sparse Representation of Brain Aging: Extracting Covariance Patterns from Structural MRI

    Get PDF
    An enhanced understanding of how normal aging alters brain structure is urgently needed for the early diagnosis and treatment of age-related mental diseases. Structural magnetic resonance imaging (MRI) is a reliable technique used to detect age-related changes in the human brain. Currently, multivariate pattern analysis (MVPA) enables the exploration of subtle and distributed changes of data obtained from structural MRI images. In this study, a new MVPA approach based on sparse representation has been employed to investigate the anatomical covariance patterns of normal aging. Two groups of participants (group 1∶290 participants; group 2∶56 participants) were evaluated in this study. These two groups were scanned with two 1.5 T MRI machines. In the first group, we obtained the discriminative patterns using a t-test filter and sparse representation step. We were able to distinguish the young from old cohort with a very high accuracy using only a few voxels of the discriminative patterns (group 1∶98.4%; group 2∶96.4%). The experimental results showed that the selected voxels may be categorized into two components according to the two steps in the proposed method. The first component focuses on the precentral and postcentral gyri, and the caudate nucleus, which play an important role in sensorimotor tasks. The strongest volume reduction with age was observed in these clusters. The second component is mainly distributed over the cerebellum, thalamus, and right inferior frontal gyrus. These regions are not only critical nodes of the sensorimotor circuitry but also the cognitive circuitry although their volume shows a relative resilience against aging. Considering the voxels selection procedure, we suggest that the aging of the sensorimotor and cognitive brain regions identified in this study has a covarying relationship with each other

    Measuring macroscopic brain connections in vivo

    Get PDF
    Decades of detailed anatomical tracer studies in non-human animals point to a rich and complex organization of long-range white matter connections in the brain. State-of-the art in vivo imaging techniques are striving to achieve a similar level of detail in humans, but multiple technical factors can limit their sensitivity and fidelity. In this review, we mostly focus on magnetic resonance imaging of the brain. We highlight some of the key challenges in analyzing and interpreting in vivo connectomics data, particularly in relation to what is known from classical neuroanatomy in laboratory animals. We further illustrate that, despite the challenges, in vivo imaging methods can be very powerful and provide information on connections that is not available by any other means

    Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm

    Get PDF
    The automated identification of brain structure in Magnetic Resonance Imaging is very important both in neuroscience research and as a possible clinical diagnostic tool. In this study, a novel strategy for fully automated hippocampal segmentation in MRI is presented. It is based on a supervised algorithm, called RUSBoost, which combines data random undersampling with a boosting algorithm. RUSBoost is an algorithm specifically designed for imbalanced classification, suitable for large data sets because it uses random undersampling of the majority class. The RUSBoost performances were compared with those of ADABoost, Random Forest and the publicly available brain segmentation package, FreeSurfer. This study was conducted on a data set of 50 T1-weighted structural brain images. The RUSBoost-based segmentation tool achieved the best results with a Dice’s index of (Formula presented.) (Formula presented.) for the left (right) brain hemisphere. An independent data set of 50 T1-weighted structural brain scans was used for an independent validation of the fully trained strategies. Again the RUSBoost segmentations compared favorably with manual segmentations with the highest performances among the four tools. Moreover, the Pearson correlation coefficient between hippocampal volumes computed by manual and RUSBoost segmentations was 0.83 (0.82) for left (right) side, statistically significant, and higher than those computed by Adaboost, Random Forest and FreeSurfer. The proposed method may be suitable for accurate, robust and statistically significant segmentations of hippocampi

    Cortical Gyrification and Sulcal Spans in Early Stage Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is characterized by an insidious onset of progressive cerebral atrophy and cognitive decline. Previous research suggests that cortical folding and sulcal width are associated with cognitive function in elderly individuals, and the aim of the present study was to investigate these morphological measures in patients with AD. The sample contained 161 participants, comprising 80 normal controls, 57 patients with very mild AD, and 24 patients with mild AD. From 3D T1-weighted brain scans, automated methods were used to calculate an index of global cortex gyrification and the width of five individual sulci: superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure. We found that global cortex gyrification decreased with increasing severity of AD, and that the width of all individual sulci investigated other than the intra-parietal sulcus was greater in patients with mild AD than in controls. We also found that cognitive functioning, as assessed by Mini-Mental State Examination (MMSE) scores, decreased as global cortex gyrification decreased. MMSE scores also decreased in association with a widening of all individual sulci investigated other than the intra-parietal sulcus. The results suggest that abnormalities of global cortex gyrification and regional sulcal span are characteristic of patients with even very mild AD, and could thus facilitate the early diagnosis of this condition
    corecore