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1. Introduction  

New scientific developments, such as molecular editing techniques (e.g. zinc finger nucleases) and enhanced 

ways of introducing modifications (e.g. lentiviruses), are leading to an increasingly extensive range of potential 

GM animal applications. Proponents of GM animal production argue that some of these applications should be 

integral to the development of new diagnostic techniques and drugs for human diseases, through the production 

in animals of novel replacement proteins, vaccines, research models and tissues for the treatment and prevention 

of human diseases (COGEM 2011). They also propose that GM livestock have the potential to contribute to 

improving the environment and human health, with consumption of fewer resources and reduced waste 

production (Murray and Maga 2011). GM developments could also improve the welfare of animals by reducing 

disease incidence and enhancing overall health and well-being, minimising the need for care intervention (Kleter 

2010; Maga and Murray 2010).  

From an extensive survey we have identified over thirty GM animal applications under development or already 

in the market around the world, although this is likely to be an underestimate as some developments may not 

have been published. These data should therefore be considered illustrative. Most GM animals are currently 

used for research, for example to study mechanisms of gene action and function, or to test or produce new 

therapeutic agents. Commercial applications of GM animals include use as bioreactors to produce recombinant 

pharmaceutical proteins in milk, for example ATryn® (for blood clotting) and Ruconest™ (Rhucin® in non-

European territories) to reduce acute swelling (Houdebine 2009;Vàzquez-Salat 2012) and potential use in 

xenotransplantation (the transplantation of cells, tissue or organs from one species to another) (Niemann et al. 

2009; Ekser et al. 2012). There are currently no known GM animal food products on the market, but a faster 

growing GM salmon (AquAdvantage®) has been under regulatory review in the US since 1993 (Van 

Eenennaam and Muir 2011). Other animals have been modified to increase their growth rates and improve the 

quality of animal products (Marshall et al. 2006; Hume et al. 2011) including reducing the level of human 

allergens such as β-lactoglobulin (Jabed et al. 2012).  

Pigs with a reduced environmental footprint (Golovan et al. 2001) were developed in Canada (EnviropigTM) and 

were proceeding through regulatory approvals, although work on this has now reportedly ceased (Pig Progress 

2012). China is said to have a major agricultural GM program to make more animal-based food available 

(GAIN 2011) and scientists in Africa are aiming to produce GM cattle resistant to sleeping sickness (Noyes et 

al. 2011). In the UK, scientists are developing GM chickens resistant to avian influenza (Lyall et al. 2011). GM 

animals have also been used to produce spider silk for medical and defence purposes (Lazaris et al. 2002; 

Service 2002), but this process was reportedly replaced by production from cells in culture (COGEM 2011). 

Another application involves GM insects produced to reduce spread of malaria and dengue fever to humans 

(COGEM 2011). Applications predominantly restricted to laboratory use or for the pet market (fish with 

enhanced colour range (Pray 2008)) are not considered in this paper. This wide range of applications in a 

number of species represent a diversity of different contexts, both natural and social.  

Food security concerns are arising from a combination of population growth, impacts of climate change on 

weather, and competition for scarce resources, including water and energy. Global aggregate food production is 

projected to increase 60% between 2005/7 and 2050 to meet demand (Alexandratos and Bruinsma 2012, p7). At 

the same time, agriculture will need to adapt to the impact of climate change and will likely be expected to 

contribute to reducing greenhouse gas emissions (Garnett 2009). Greater and more frequent threats from plant 

and animal diseases are expected as climate change allows the spread of vector-borne diseases into new areas 

(Tomley and Shirley 2009) and these will be allied to changes in consumption patterns - the world demand for 

meat and milk is projected to more than double by 2050 (FAO 2009). China already consumes more than 25 

percent of all the meat produced worldwide (Subramanian 2012), having increased from 8 million tonnes in 

1976 to 71 million tonnes in 2012 (now more than double that in the US). These trends are leading to calls for 

‘sustainable intensification’ of agricultural production (Foresight. The Future of Food and Farming 2011). It has 

been argued that GM animals could contribute greatly to meeting these challenges (Fahrenkrug et al. 2010; 

Hume et al. 2011). 

Over sixty percent of the GM animals that we have identified as potentially for commercial application have 

been developed to produce pharmaceutical proteins or to be disease resistant. This suggests that these two 

categories are currently the most commercially attractive propositions, possibly because they could be 

considered less controversial than other applications. Sixty five percent of the GM animal applications we 

identified appear to be at advanced research stages and 25% are either in the approval process or have been 

approved for commercialisation (mostly in the pharmaceutical sector) (Figure 1). However, it is too early in the 

development of this technology to predict where the greatest economic and societal benefits will arise and which 

currently attractive applications of GM animals will be superseded by new production processes or even better 
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products. Some sectors, such as the pharmaceutical sector, may prove to be less controversial and develop more 

readily. 

This paper considers the new scientific techniques that are enabling the development of GM animals, 

particularly for food and agriculture-related purposes, and examines the relevant regulatory approaches adopted 

particularly in the European Union (EU). The nature of the regulatory framework will determine companies’ 

and nations’ ability to benefit from these new innovative approaches to animal production, and we explore the 

potential innovation-related impact of current regulatory choices. This paper builds on our interdisciplinary 

expertise over two decades of following the development of GM technologies and the regulation of 

biotechnologies, supplemented by an extensive literature review of current developments worldwide. We 

synthesise findings from multiple research projects involving prolonged interaction with over 20 informants in 

research, regulation and industry and participant observation in industrial and regulatory meetings. 

 

2. Scientific developments in GM animal production 

Scientific research to develop GM animals has been ongoing since the early 1980s and now a range of new more 

precise techniques is offering opportunities for easier, more cost-effective and efficient generation of GM 

animals. These techniques differ in their suitability for different animal species, their efficiency of 

transformation, and their implications for risk assessment.  

As shown in Figure 2, methods for introducing a genetic modification have evolved from microinjection into an 

early embryo (Gordon et al. 1980; Palmiter et al. 1982), through modification of cells in culture for subsequent 

re-introduction into an early embryo, to using viral vectors (such as lentiviruses) to introduce modified genes 

into a large number of cells, either in culture or in an embryo. Molecular techniques to manipulate the genetic 

material itself have evolved from inserting single genes (usually in combination with marker genes to allow the 

introduced gene to be identified) to manipulating individual nucleotides.  

The original method, the injection of DNA coding for a specific novel trait into the nucleus of a fertilised egg 

(Clark and Whitelaw 2003; Ittner and Gotz 2007), is technically difficult and inefficient and only around 1 per 

cent of the treated embryos result in live GM animals (Le Provost et al. 2009). The expression of the novel gene 

also varies significantly as the technique is not able to target introduction of the gene to a precise location in the 

genome, or to control the number of copies introduced (Dove 2000). Thus, whilst conventional micro-injection 

based methods are successful in generating transgenic animals, the search for more efficient and more 

accurately targeted approaches has continued (Park 2007).  

Nuclear transfer technology (cloning) was developed to overcome some of the technical issues with micro-

injection by genetically modifying cells in culture, identifying cells that had been successfully modified and 

using these to develop GM animals (Suk et al. 2007; Buck 2011). In 1997, the first GM animal was produced in 

this way (Schnieke et al. 1997) but this technique is technically demanding and costly in comparison to other 

approaches (CAST 2009). Nuclear transfer has changed the timing and location of genetic modification from the 

early embryo to cell culture, and allowed selection of cells only with successful genetic modifications to be used 

to produce the animal.  

Dramatic improvements in the efficiency of GM animal production took place in the early 2000s based on 

developments in human gene therapy. The use of lentiviruses instead of micro-injection to deliver genetic 

material allowed manipulation of both cell cultures and well-developed chick embryos (McGrew et al. 2004). 

According to Novosleva et al. (2007) using the standard microinjection procedure, between 1-5% of injected 

eggs gave rise to a transgenic founder animal, whereas through the use of lentiviral vectors, over 30% of the 

injected eggs resulted in a transgenic founder animal. An alternative method used to introduce new genetic 

material, drawing on developments in human fertility treatment, particularly the use of intra-cytoplasmic sperm 

injection (ICSI), is GM sperm injected directly into the egg (Kaneko et al. 2005).  

Molecular methods of manipulating genetic material have also improved substantially with the ability to 

suppress the expression of existing genes. Most notably, RNA-interference (RNAi) has been used to regulate or 

prevent the expression of a gene resulting in chickens that are unable to transmit avian influenza (Lyall et al. 

2011) and a range of other opportunities (Clark and Whitelaw 2003). 

Additional methods for targeting modifications to a specific location in the genome include, in combination with 

nuclear transfer, homologous recombination of the introduced DNA fragment in donor cells, usually involving a 

selection marker (Cappechi 1989). More recently the ability to ‘edit’ DNA using a range of synthetic enzymes 

(nucleases) that act as molecular ‘scissors’ has further improved the capabilities of genetic technologies: (i) zinc 

finger nucleases (ZFNs) with each zinc finger targeting specific nucleotide triplets; and (ii) a group of nucleases 

created from Transcription Activator-Like Effectors (TALENs) with each TALE targeting individual 
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nucleotides in specified locations in the genome (Durai et al. 2005; Geurts et al. 2009; DeFranceso 2011; 

Carlson et al. 2012). Both ZFNs and TALENs and an even more recent RNA system known as CRISP-Cas 

(Wang et al. 2013) cause user-specified breaks in the DNA, and as the break is repaired small mutations or other 

changes readily occur at the desired site, either resulting in deactivation of the gene, or allowing new genetic 

material to be added. For example, a pig model of human familial hypercholesterolemia, to investigate 

predisposition to heart attack at an early age, is being developed using TALENs to knock out the relevant gene 

(Carlson et al. 2012), currently achieving 10-20% success rates in editing the founder population (Whitelaw, 

unpublished data).  

Where is development of GM animals being funded? There are few publicly available data on research 

expenditure in the commercial GM animal sector. In the public sector, the low level of funding to support the 

development of GM animals in some jurisdictions has been criticised (Fernandez and Schook 2005; COGEM, 

2011) and the US, UK, Australia and New Zealand are alleged to have gradually reduced public funding for this 

technology. Where public funding in the US and EU is available, the main focus is said to be on the 

environmental safety of GM animals.  

A different scenario is occurring in emerging economies where public statements suggest heavy investment in 

research and development on GM animals. Taking China as a case in point, GM technology is part of the 

government’s vision for food security. The government is the primary investor, having developed an extensive 

research programme to improve disease resistance in animals, produce valuable compounds and increase 

productivity (GAIN 2011; Yang et al. 2011). Publicly funded research institutes or universities have developed, 

or are researching, GM animals, but no arising technologies are known to be in commercial production. The first 

applications are expected to reach the market in two years (Yang et al. 2011; Yang, 2003). For example, the 

Heilongjiang Fishery Institute of Chinese Academy of Fishery Science has developed GM carp using a growth 

hormone gene, reported to be under field trial, and Shanghai Genon Nio-engineering has developed GM goats 

that express either a human lactoferrin or a lysozyme gene. The former has been approved for an enlarged field 

trial and the latter is under restricted field trial (GAIN 2011). More recently, scientists in China have used 

somatic cell nuclear transfer to demonstrate improvements in milk yields from cattle (Yang et al. 2011). The 

Chinese government has also invested in large scale research institutions and complexes including China 

Medical City in Taizhou, a national high-tech pharmaceutical park that includes research and development on 

GM animals and the Institute for Animal Science, dedicated to the development of GM cattle (Fernandez and 

Schook 2005).  

In summary, the new genetic techniques that have emerged since 2000 have the ability to modify animals more 

easily and precisely and in many cases more cheaply. The modifications produced are more nuanced in nature, 

with much higher success rates and the increased range of possibilities for manipulating the genome of animals 

has increased scientific and commercial interest with much more significant investment in emerging than in 

developed economies. Where development is slow compared to the potential, this is at least partly related to the 

current state of regulatory systems, as discussed in the next section.  

3 Regulatory issues in GM animal development and commercialisation 

Regulatory systems are among the most important influences in determining the course of technological 

innovation. This is true in terms of which products can be developed safely, the type and size of companies able 

to commercialise new technology, and which nations and regions are able to prosper based on locally generated 

knowledge (Mittra et al. 2011). Until 2008 there appeared to be no serious impetus behind regulatory initiatives 

related to GM animals, but the prospect of some applications being market-ready has since stimulated activity 

on safety assessments internationally. 

3.1 The International Context 

International trade in food products are subject to regulation in the context of the Cartagena Biosafety Protocol 

and the World Trade Organization (WTO) agreements. The Cartagena Biosafety Protocol applies to Living 

Modified Organisms, including GM animals, and is intended to protect biodiversity.  International regulatory 

guidance on GM animals within the WTO is given under the Codex Alimentarius (2008) building on the 

regulatory precedent of GM plants and microorganisms. In many cases it will not be appropriate to translate a 

regulatory approach developed for a different set of organisms directly across to GM animals. For example, the 

introduced DNA and/or derived products may impact either positively or negatively on the health status of the 

animals. GM animals may have either a greater or a lesser tendency to accumulate specific toxic substances or 

zoonotic pathogens that could be transmitted to consumers. This variability in potential impact leads to 

recommendations for a case-by-case approach to the regulation of GM animals, although the presumption in the 

EU has so far invariably been that this will be based on the systems currently in place for GM plants and micro-

organisms. 
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Regulations are in place for GM animals in the USA (FDA 2009), Canada (Health Canada 2011) and Australia 

(AFAA 2004). In India a bill has been drafted to create the Biotechnology Regulatory Authority to be 

responsible for assessing all GM animal related applications (Vàzquez-Salat et al. 2010). Argentina has 

developed a case-by-case regulatory regime and was the first country in Latin America to develop two 

generations of GM cows capable of producing human growth hormone (Salamone 2006). Brazil also has 

introduced a Biosafety Law to regulate GM techniques (Mendon et al. 2008). As noted above, there are also 

strong emerging developments in China (Huang and Wang 2002; GAIN 2011). 

One of the most important international issues in regulation of GM technologies continues to be differences in 

regulatory approaches focused primarily on the process by which new technology is developed, and those 

approaches focused primarily on the characteristics of the arising product. Europe (but not necessarily all its 

member states) is broadly seen as “process-based,” Canada uses novelty as the regulatory trigger and is 

primarily “product-based,” and the US is similarly product-based although technological process can have 

implications for deciding which regulatory pathway is appropriate. Although these differences emerged in the 

1980s (Tait and Levidow 1992), they remain a source of international tension underlying, for example, US and 

EU trade disputes about GM crops that were heard by the WTO (WTO, 2010). Although there is a tendency to 

see the product-based approach as less antagonistic to innovation than the process-based approach, in practice 

both have their problems (Mandel 2004), and the differences between the approaches can be over-emphasised to 

make points about issues extending beyond the operations of regulatory authorities. Irrespective of whether a 

product or process-based approach is taken, there may be more fundamental presumptions to address first, 

namely the perception that GM animals raise more serious human risks than GM plants, and pose more 

significant environmental risks in light of their mobility and hence potential for invasiveness (Waigmann et al. 

2012).  

 

3.2 European Regulatory System 

GM organisms used for food or feed in the EU are regulated through a centralised process governed by key legal 

instruments (EU Directive 2001/18/EC and Regulation (EC) 1829/2003). Processes for approval are built on a 

comparative approach that aims to identify biologically relevant differences by comparing the Genetically 

Modified Organism (GMO) with a non-GM counterpart. A GM animal may, however, need to be evaluated 

where there is no conventional counterpart. The European Food Safety Authority (EFSA) is the body charged 

with providing independent scientific advice to the European Parliament, European Commission and Member 

States on the basis of risk assessments related to food and feed safety, including risks related to the use of 

GMOs (plants, food animals and micro-organisms). In the case of GM animals, the relevant EFSA Guidance 

Document proposes the use of non-GM surrogates with similar characteristics, and the need for containment in 

the experimental environment. The Guidance Document will contain separate sections relevant to fish, insects 

and terrestrial mammals and birds, with case studies (Waigmann et al. 2012). 

In 2011, to pre-empt marketing of food from GM animals before legislation was developed, the European 

Commission asked the EFSA to assess the possible risks for food and feed safety and for the environment, and 

also issues related to animal health and welfare (Bronzwaer 2008; EFSA 2012; EFSA 2013). As Vàzquez-Salat 

et al. (2010) note, disagreement persists over the application of EU GMO regulations at member state level, 

given that animal welfare is of higher political importance in some EU countries than in others. In the 

Netherlands and Denmark, GM animal regulation includes specific regulations on the ethical aspects of GM 

animal production. In the Netherlands, a political party with animal rights as their highest priority (The Party for 

the Animals) has parliamentary representation and national regulation includes the ethical principle that genetic 

modification of animals involves ‘erosion of the species identity’ and should only be permitted in the service of 

an application of substantial importance, e.g. medical uses but not food production (COGEM 2011). Apart from 

GM animals for pharmaceutical production, the regulatory regime in the EU remains untested with respect to 

other applications of GM animal technology. 

There are several regulatory challenges in translating the EU GM crops regulatory approach to a system adapted 

to GM animals, such as the additional aspect of animal welfare, mobility and the status attributed to animals. As 

it stands, the existing GM crop regulation is itself under challenge due to developments in molecular biology 

which are pertinent to both crops and animals. For example, whereas GM animals produced by micro-injection 

or random insertion in nuclear transfer donor cells can be identified through the presence of the inserted gene 

construct with or without the presence of a marker gene, the same cannot be said for changes caused by genome 

‘editors’. In particular, TALENs and ZFNs may produce a change consisting of a single nucleotide, something 

that could be produced by a naturally occurring mutation and would therefore be difficult, if not impossible, to 

identify as artificially induced. The question remains whether these types of alterations would be classed as 
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genetic modifications under the definitions of the EU Directive (Dunwell, personal communication; Lusser and 

Davies 2013). 

European governance of GM technologies, particularly where a product is likely to become part of a food chain, 

has been strongly influenced by political considerations, in which public opinion has tended to predominate over 

science-based risk assessment Vàzquez-Salat et al. (2012). Although the advice of the EFSA is scientifically 

based and may conclude that there are no significant risks associated with the use of a particular GMO, the 

political process into which this advice is injected has so far been able to prevent commercial application of the 

technology for GM crops. Policy makers operate on a presumption that European public reactions to GM crops 

will be negative and this is a major political consideration for several national governments with strong Green 

party representation, but may not fully reflect public attitudes as these can change with time (e.g. Gaskell et al. 

2011). The intention to base regulatory systems for GM animals on the GM crop precedent could imply a 

continuing influence of political considerations rather than a decision process based on evidence of risks and 

benefits (Tait and Barker 2011; Vazquez-Salat and Houdebine 2013).  

4 Regulation/Innovation Interactions 

We have previously explored the nature of the relationships between innovation and regulation across a broad 

spectrum of life sciences (Milne and Tait 2009; Tait and Barker 2011; Mittra and Tait 2012; Mastroeni et al. 

2013). We have demonstrated how regulation has implications not only for ensuring the safety and efficacy of 

the product being brought to market, but also for individual company strategies, for the type of firm that will be 

successful in bringing the products to market, and for the ability of an entire sector to contribute to national and 

regional economic development, as summarised in the following examples.  

(i) The lengthy and costly regulatory system for drug development that has been built up over the past 

fifty years has generally favoured multinational companies (MNCs) in that it acted as a barrier to entry 

for new entrants, with the result that the sector is dominated by the innovation strategies of these 

MNCs (Tait et al. 2008; Mittra et al. 2011). Both regulators and industry increasingly recognise that 

this regulatory system is now so onerous that it is leading to failures in development of potentially safe 

and useful products and at least in the US ways are being sought to adapt the current regulatory 

systems to the opportunities presented by 21st century science (FDA 2011). 

(ii) When new developments emerge in life sciences, the choice of regulatory approach, usually at an early 

stage in the development of practical innovations, will determine which products can eventually reach a 

market place and what scale of company will be needed to commercialise the technology. Only large 

multinational companies (MNCs) will be able to support the high levels of investment over long 

timescales required to commercialise most life science products, forcing all other innovators to work 

with the innovation strategies of the MNCs (Tait et al. 2008). Thus, the choice by the US Food and 

Drugs Administration (FDA) and the European Medicines Agency (EMA) to develop the 

pharmaceutical regulatory system  as the appropriate model for both cell therapies (Tait 2007; 

Mastroeni et al. 2012) and novel diagnostic technologies (Mittra and Tait 2012) is likely to mean that 

only large MNCs will be able to develop products in these areas, to the neglect of smaller niche market 

opportunities and of more innovative products and processes that would have arisen from a small and 

medium sized enterprise (SME) component of the sector. 

(iii) Regulatory systems for GM crops provide another example of how an early choice of regulatory 

system will determine the future trajectory of a technology. In the 1980s, the choice of regulatory 

systems being considered for GM crops was between treating them as a new plant variety or as a new 

form of crop protection technology. The choice of the latter regulatory approach shifted the innovation 

trajectory from seed companies to agrochemical MNCs, with a different set of choices for first 

generation products, leading eventually to take-over of seed companies by the agrochemical MNCs and 

contributing to the negative public framing of the technology in Europe. For example, Monsanto 

embarked in the 1990s on a very expensive strategy of ‘buying the route to market’ (Chataway et al. 

2004). The subsequent precautionary regulatory approach in Europe has failed to adapt to evidence of 

the safety and the benefits of these products and has led to a serious decline in innovation in GM crops 

directed to European agricultural systems (Tait 2008; Tait and Barker 2011). 

As noted earlier sixty five percent of the GM animal applications identified in this review are at advanced 

research stages but companies do not seem to be pushing towards commercialisation (Figure 1). Potentially 

revolutionary scientific developments could create valuable opportunities in new innovative markets, but 

companies will be unwilling to invest in the new technologies while there is uncertainty about the nature of 

future markets, with the ambivalence of policymakers towards GM animal applications and with no clear 

regulatory path, Fernandez and Schook (2005 p6) observe: 
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“…. between uncertain consumers and an unclear regulatory pathway, animal biotechnology finds 

itself at a crossroads. Will it simply stay where it is for the foreseeable future, idling but not 

progressing? Will it go forward to its logical destinations—such as agriculture and drug markets—or 

turn around and retreat the way it came, … a research tool that …. never ventures out to the farm or 

pharmaceutical factory? … will other countries developing animal biotechnology simply take the 

wheel and drive ahead, putting their own transgenic and cloned animal products on the market?” 

In the absence of applications for commercial release in the EU, what can be learned from market authorisation 

processes in other jurisdictions? In an example of this process at work, in the late 1990s a line of GM pigs with 

the capability to digest plant phosphorus more efficiently, the EnviropigTM, was developed at the University of 

Guelph, Canada, (Golovan et al. 2001). EnviropigTM reached the initial stages of the Canadian marketing 

authorisation procedure, but after more than a decade of interacting with regulators, in April 2012 Ontario Pork, 

one of the project’s funders, decided to withdraw (Pig Progress, 2012). The EnviropigTM might have been the 

more elegant technological solution, but inorganic phosphate feed additives address the nutritional demands of 

pigs, whereas feed supplementation with phytase makes organic phosphate bioavailable and to an extent lessens 

phosphorus excretion. This illustrates the complex interactions between innovation and regulation: regulatory 

uncertainty made it impossible for the developer to assess the relative commercial advantage of the new 

technology, and the long time lag between proof-of-concept of the technology and approval for commercial 

applications introduced delays and uncertainties that made it unlikely that the modified pigs would be tested in 

the market.  

A second example demonstrating the impact of regulatory delays and uncertainties on innovation is 

AquAdvantage® Salmon, being developed in the USA, that has been in a regulatory review process for over 15 

years. The underlying brood stock are conventional farmed Atlantic salmon varieties, modified using pronuclear 

injection techniques, adding a growth hormone regulating gene from a Pacific Chinook salmon and a promoter 

from an ocean pout, to enable it to grow all year-round, instead of only during spring and summer. 

AquAdvantage® Salmon are claimed to reach market size twice as fast and to reach a mature size faster than 

traditional salmon without increasing in size, making them indistinguishable in appearance to conventional 

farmed salmon. Although they are bred to be sterile by pressure-induced triploidy, concerns about fish escapes 

have suggested to some that open water net pens should be replaced by either hard form floating containers, or 

on-land wholly contained facilities (Van Eeneennaam and Muir 2011).  

When AquaBounty Technologies, the developer of AquAdvantage® Salmon, sought regulatory guidance from 

US Food and Drugs Administration (FDA) for its development and approval in 1993, no regulatory pathway 

existed for GM animals. The company petitioned for regulation under the FDA as they thought that this rigorous 

pathway for approval would help assuage public concerns regarding food from GM animals. AquaBounty 

Technologies submitted the first data set to the FDA in 1996 and 40 US Senators and Representatives wrote to 

the FDA requesting that it reject the application. The FDA continued to review the application to approve GM 

salmon or AquAdvantage® Salmon as the first genetically modified animal to be introduced into the United 

States food supply, and in September 2010 an FDA advisory panel indicated that the fish was generally safe 

(Van Eenennaam and Muir 2011). Since then high-level policy issues have further delayed formal approval of 

the modified salmon. In December 2012, the US FDA (2012) announced a preliminary finding that (p 5) “… an 

approval of this application … would not have a significant impact on the US environment”. Subsequently, 

following a consultation period extended to April 26th 2013, final approval is still on hold in a process that has 

similarities with the interactions around scientific risk assessment by the EFSA and the politics of the European 

Parliament in the approval process for GM crops.  

It is not unusual for the first applications of a novel technology to take a considerable time to obtain regulatory 

approval (for example Martineu (2001) traces the steps between 1990-94 to gain regulatory approval for one of 

the first GM crops, Calgene’s Flavr Savr ™ tomato in the USA). It is also possible that these applications are 

considered more controversial than other applications. Nevertheless, time to market, combined with regulatory 

costs and uncertainties in the process, create serious challenges for technology developers that are likely to 

restrict the type of developer and the number of developers willing to invest in GM animal production. 

Difficulty in obtaining financial investment will particularly discourage smaller companies or public sector 

organisations, perhaps with more innovative applications, from entering these markets. Venture capitalists, in 

this as in other areas, tend to invest in technologies with clearer regulatory pathways to minimise costs, delays 

and uncertainties. By contrast, technologies that depend on breaking new regulatory ground can strand capital if 

they never reach the market, or if they do, they might be out-dated by the time they are approved. Most GM 

animals currently being developed in advanced economies are in university spin-off companies or small and 

medium enterprises that are unlikely to be able to negotiate a lengthy and costly regulatory process the outcome 

of which is uncertain.  
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Difficult regulatory environments in Europe and North America are thus likely to lead to research and 

development on GM animals moving to jurisdictions that are more favourable to development (COGEM 2001). 

For example, a project to manufacture anti-diarrhoea medicine from GM goats that express the human enzyme 

lysozyme in their milk (Murray et al. 2010), was transferred to Brazil in 2010 after 10 years of research in the 

US. Brazilian scientists have received $3.5 million from their government to initiate human trials of the goats’ 

milk, whereas in the US the project received a $400,000 grant from US Department of Agriculture over three 

years for a study focused on the environmental safety of the GM animals. The decision to relocate the project 

was partly influenced both by the lack of funding and by the delay of more than 10 years by the US FDA in 

deciding how to regulate GM animals. The FDA issued guidance to those developing the product in January 

2009 by which time they were already in discussions with colleagues in Brazil. Given successful human trials, 

the GM goat milk is expected to progress through the Brazilian approval process more smoothly and quickly 

than it would in the USA (Regaldo 2010).  

Decisions on location of company activities are complex but the above instance seems likely to become a 

pattern unless clearer regulatory approaches with defined and evidence-based routes to market are developed in 

Europe and the US. In these regions regulatory regimes for GM animals produce, to varying degrees, a negative, 

reinforcing cycle of regulatory inertia, lack of investment, policy ambivalence, lack of research funding and lack 

of commercial products. Increasingly sophisticated and discriminating innovation in the methods available for 

producing GM animals raises questions about the current weak state of development of regulatory regimes in 

the EU and USA; about the appropriateness of regulations that have been derived in the context of previous 

generations of GM technology; and about the relevance of regulatory systems developed for GM crops and 

micro-organisms to GM animals. Furthermore, the international nature of life science innovation processes 

means that challenges to regulatory systems seen as inappropriate in the EU and USA could lead to major 

regional differences in the rate and scope of innovation in novel technologies and, potentially, to poor 

consideration of benefit, risk and safety issues. 

5 A regulatory framework for GM animals 

 

5.1 Innovation configurations as a basis for a regulatory framework 

GM animals present complex and interacting problems for both innovators and regulators, in common with 

many other areas of life science innovation. The main problem with innovation-regulation interactions in the 

context of GM animals might lie in the apparent reluctance of policy-makers to engage in the development of 

regulations specific to GM animals. Falling back on GM crops as the appropriate regulatory precedent for GM 

animal developments might help to set part of the framework, but divergences in the regulation of conventional 

plants and animals already suggest that the differences between GM plant and animal regulation will outweigh 

the similarities. In addition, the technologies surveyed in this study suggest that caution needs to be exercised in 

using regulatory precepts and procedures developed for older technologies in the regulation of newer 

technologies. Given the small number of technologies for which commercial approval has been sought, it is 

unlikely that regulators will take the initiative. Yet to emerge is an integrated industry sector with the capacity to 

foster inter-organisational collaborations and a clear vision of the new, potentially path-breaking innovation 

portfolio it wants to develop a ‘configuration of innovators’ (Brown et al. 2001). This term ‘configuration’ 

captures the creation of a complex network of relationships among firms and between firms and key public 

constituencies. These can include the development of new institutional alignments, cultures, new ‘social’ 

markets and organisational resources. Although the Biotechnology Industry Organization and EuropaBio acts as 

advocates for industry, the concept, as described by Brown et al. 2001, extends beyond conglomerations of 

innovative companies. 

The kind of configuration advocated by Brown et al. could greatly facilitate the development of effective GM 

animal regulatory systems. Indeed, given the diversity of types of GM animals and of areas of application of the 

technology, it is likely that there will be several such potential configurations, each requiring different 

regulatory approaches. Future regulatory frameworks for GM animals will need to take account of the dynamics 

of each set of configurational relationships given, as we note above, that the regulatory system adopted will 

determine the nature of the innovative products developed, their areas of application, and the time-scales for 

their development. Without a prior set of visions driving coherent programmes of innovation and contributing 

actively to the development of regulatory systems for GM animals, there is a strong probability that the 

emergent regulatory systems will not be responsive to either path-breaking or incremental innovation. 

Innovation configurations that could build innovative momentum around animal bio-science developments 

could be based initially on the kinds of companies currently involved in producing the animals, as outlined 

below. These could then form the nuclei on which to build viable innovation configurations along with adaptive 
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regulatory approaches based on the markets for the products, and the risk and ethical issues raised by the 

innovations.  

(i) Poultry, pigs and dairy cattle 

The poultry and pig breeding sectors, and to some extent dairy cattle, are characterised by a high level 

of competition and a small number of dominant companies, with significant activity also from farmer 

co-operatives acting internationally. Where food uses are involved, food processing and distribution 

markets will be relevant. Individual farm businesses will also be key components of the value chain. 

Where there are health-related applications this may bring in large or small pharmaceutical companies 

either directly involved as breeders or as downstream processors and marketers of pharmaceutical 

products.  

(ii) Beef cattle, sheep and goats 

Breeding of animals in this sector in the EU is mainly in the hands of individual farmers or breeders or 

of farmer cooperatives, creating a challenge for the coordination activities required to bring together an 

effective innovation configuration. Depending on the type of innovation, the wider farming community 

will also need to be involved in downstream production as may food processors and distributors and 

also the health care sectors. This sector seems particularly unsuited for co-ordinating activities to 

promote development of GM animals. 

(iii) Insects and fish 

Insects and fish incorporating bioscience innovations are mainly produced by small and medium-sized 

Enterprises (SMEs). Without a well developed innovation configuration involving companies of a 

range of different sizes and influence, individual small companies in this area will struggle to be heard 

in debates about regulatory processes. 

Configurations within each of these sub sectors depends on a number of actors perceiving a specific GM animal 

application as being advantageous to develop. As yet there is little evidence of such intentions in several of the 

sectors. Configurations built on each of these three subsectors will encounter different regulatory challenges 

depending on whether, for example: they are selling products into the food or pharmaceutical sector; the 

innovative developments they are working on are to improve the health, disease burden or productivity of the 

animals themselves or to improve the quality of animal products; and the extent to which the animals themselves 

may present environmental hazards (this last being particularly relevant to insects and fish). 

5.2 Product and process based approaches 

The above analysis creates a case for regulatory consideration of each animal bio-science related innovation 

primarily on the basis of the nature of the product itself, and secondarily on the process by which it was 

developed. As noted above, for EU jurisdiction, were the existing GM crop regulatory system adopted as the 

relevant precedent for animal-related developments, a process-based approach would be likely. A recent EFSA 

review of its risk assessment processes for GMOs (Waigmann et al. 2012 p6), suggests that process-based 

regulation is not inevitable, however. In the context of the ‘product vs process’ debate, it was remarked that 

“[g]iven the fast development of new breeding/production technologies applied to organisms, which may need a 

revision of current regulatory definitions of genetic modification, EFSA is prepared to investigate risk 

assessment strategies for modified organisms, based on the characteristics of obtained products rather than based 

on the applied breeding/production technology.” If followed through, this could signal the beginning of a major 

shift in European regulatory systems as applied to GM and related technologies.  

5.3 Regulating a diversity of technological innovation 

Among the many functions of regulatory systems, a primary goal in the EU is reducing citizen exposure to 

hazards potentially posed by commercialised products and services. One view of regulation is that it serves 

innovators and the public best when it enables positive change in industry behaviour while carefully 

discriminating between types of risks that would be socially relevant (Mittra et al. 2011). Process-based 

regulations are indiscriminate when they apply equally to all GM organisms, irrespective of their properties, and 

product-based approaches do not discriminate among processes by which products are created. That much is 

tautological, but the salient point is that the principle goal of regulation is better met by considering the risks and 

benefits of product properties, for it is these that would be preferentially embraced or avoided by the public. 

Processes by which GM products are created are not benefits or risks in themselves.  

One example of how discriminating, enabling regulation might be applied to GM animals is the development of 

chickens resistant to avian influenza. Award of provisional regulatory approval in a restricted range of highly 

monitored circumstances could provide opportunities to gather evidence of the effectiveness, management 
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requirements and any unexpected side effects of the chickens, in a range of commercial situations. Such data 

could be usefully collected in advance of any crisis such as an influenza pandemic. The high potential for human 

benefit could justify ‘cautionary’ use of the technology in a restricted range of circumstances. 

In a second example, some might argue that genetic modifications deemed to be of welfare benefit could be 

given ‘fast track’ approval. Some beef cattle carry a natural genetic mutation and fail to develop horns (a state 

referred to as ‘polled’). This genetic variant rarely occurs in dairy cattle. A lack of horns is advantageous in 

terms of human safety when handling the cattle and of reducing the potential for cattle to harm each other. 

Current practice is to prevent the development of horns using chemical, heat or other methods, but the polled 

state could be produced by inducing a genetic change in the relevant gene using TALENs (Ridley 2013). If it is 

accepted that such changes would be beneficial to both animal and human welfare, then a ‘fast-track’ approval 

approach could be adopted for this innovation. 

Animal breeding activities currently are not subject to much regulation in the EU. Individual pedigree animals 

may be registered in herd books for quality assurance (the animal must be of the correct breed and have 

recognised parentage) or recorded in company databases. In many cases these records when combined with 

measurements on animals are essential for evaluation for genetic merit. Regulatory compliance tends to be 

restricted to those regulations pertaining to general agricultural practice such as animal welfare, environmental 

impact and animal disease control. Any regulatory process derived specifically for advanced biotechnology as 

applied to animals would require the current breeding industry to acquire new skills in regulatory compliance, 

but consideration should be given to which regulatory approaches would be most enabling of innovation.  

Managing the transition from first generation GM animals to more mature techniques and applications of 

genetic manipulation could provide an opportunity for developing a more discriminating regulatory framework 

that might influence the direction of innovation in GM animals. Whether the case for using GM animals to 

support sustainable intensification is accepted or not, innovation in the field of GM animal technologies is 

arguably far ahead of the policy and regulatory environment. Future regulation of GM animals should be 

capable of evolving as scientific and technical capacity expands and as lessons are learned about the most 

appropriate forms of regulation. This requires flexibility in the face of uncertainties around the eventual 

applications, products, processes and risks of GM animals.  

 

6 Conclusion 

Specific GM animal regulatory frameworks are yet to be developed, and in the meantime other existing 

regulations, guidances and practices are being adapted in response to the few attempts to commercialise GM 

animal technology. Costs, delays and uncertainties are all but guaranteed, and for the foreseeable future one can 

expect a negative, reinforcing cycle of lack of commercial products, few regulatory changes, lack of investment, 

policy ambivalence and shortfalls in research funding where socio-economic impact is less assured. At the same 

time, innovation in the life sciences is reflected in increasingly sophisticated and discriminating methods of 

producing GM animals raising questions about the appropriateness of regulations derived on the basis of older 

technologies. Furthermore, the international nature of innovation means that challenges to restrictive regulations 

may derive from other jurisdictions. The time is ripe for re-examining GM animal regulation in the EU and 

elsewhere. 

 

The lack of a network of organisations to provide impetus and vision for animal biotechnology innovation 

suggests that regulatory development is likely to be more difficult to achieve. Individual and groups of scientists 

have been effective in projecting visions of the future and individual companies have sought to realise some of 

these visions, but without a network of organisations providing an ‘innovation configuration,’ the absorptive 

capacity of the private sector remains untested.  

 

Evidence from other industry sectors, such as pharmaceutical, medical diagnostic and GM crops suggests 

regulatory regimes are very influential in the type of companies able to commercialise new technologies, and the 

type of products they are able to market. Given the diversity in the technologies currently being developed, 

product-based approaches to the regulation of animal biotechnology are more appropriate. 
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Figure 1. GM animals under development, in the pipeline or already in the market 

 

 

 

Figure 2. Emergence of new techniques for animal genetic modification 
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