4,757 research outputs found

    Kinetic Theory of Collisionless Self-Gravitating Gases: Post-Newtonian Polytropes

    Get PDF
    In this paper we study the kinetic theory of many-particle astrophysical systems and we present a consistent version of the collisionless Boltzmann equation in the 1PN approximation. We argue that the equation presented by Rezania and Sobouti in A&A 354 1110 (2000) is not the correct expression to describe the evolution of a collisionless self-gravitating gas. One of the reasons that account for the previous statement is that the energy of a free-falling test particle, obeying the 1PN equations of motion for static gravitational fields, is not a static solution of the mentioned equation. The same statement holds for the angular momentum, in the case of spherical systems. We provide the necessary corrections and obtain an equation that is consistent with the corresponding equations of motion and the 1PN conserved quantities. We suggest some potential relevance for the study of high density astrophysical systems and as an application we construct the corrected version of the post-Newtonian polytropes.Comment: 23 pages, 24 figures. Accepted for publication in PR

    Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: analysis by high-performance liquid chromatography–high-resolution mass spectrometry

    Get PDF
    Orange juice is a rich source of (poly)phenols, in particular, the flavanones hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside. Following the acute consumption of 500 mL of orange juice containing 398 μmol of (poly)phenols by 12 volunteers, 0–24 h plasma and urine samples were analyzed by targeted high-performance liquid chromatography–high-resolution mass spectrometry in order to identify flavanone metabolites and phenolic acid and aromatic catabolites. A total of 19 flavanone metabolites—comprising di-O-glucuronide, O-glucuronide, O-glucuronyl-sulfate, and sulfate derivatives of hesperetin, naringenin, and eriodictyol—and 65 microbial-derived phenolic catabolites, such as phenylpropanoid, phenylpropionic, phenylacetic, benzoic, and hydroxycarboxylic acids and benzenetriol and benzoylglycine derivatives, including free phenolics and phase II sulfate, glucuronide, and methyl metabolites, were identified or partially identified in plasma and/or urine samples. The data obtained provide a detailed evaluation of the fate of orange juice (poly)phenols as they pass through the gastrointestinal tract and are absorbed into the circulatory system prior to renal excretion. Potential pathways for these conversions are proposed

    Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands

    Full text link
    Theoretical studies on the possible origin of room temperature ferromagnetism (ferromagnetic once crystallized) in the molecular transition metal complex, V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no definite understanding of crystal structure so far because of sample quality, though the effective valence of V is known to be close to +2. Proposing a new crystal structure for the stoichiometric case of x=2, where the valence of each TCNE molecule is -1 and resistivity shows insulating behavior, exchange interaction among d-electrons on adjacent V atoms has been estimated based on the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that Hund's coupling among d orbitals within the same V atoms and antiferromagnetic coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to hybridization result in overall ferromagnetism (to be precise, ferrimagnetism). This view based on localized electrons is supplemented by the band picture, which indicates the existence of a flat band expected to lead to ferromagnetism as well consistent with the localized view. The off-stoichiometric cases (x<2), which still show ferromagnetism but semiconducting transport properties, have been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3 (March issue), in press; 6 pages, 8 figure

    High degree graphs contain large-star factors

    Full text link
    We show that any finite simple graph with minimum degree dd contains a spanning star forest in which every connected component is of size at least Ω((d/logd)1/3)\Omega((d/\log d)^{1/3}). This settles a problem of J. Kratochvil

    Dispersion Relations and Rescattering Effects in B Nonleptonic Decays

    Get PDF
    Recently, the final state strong interactions in nonleptonic B decays were investigated in a formalism based on hadronic unitarity and dispersion relations in terms of the off-shell mass squared of the BB meson. We consider an heuristic derivation of the dispersion relations in the mass variables using the reduction LSZ formalism and find a discrepancy between the spectral function and the dispersive variable used in the recent works. The part of the unitarity sum which describes final state interactions is shown to appear as spectral function in a dispersion relation based on the analytic continuation in the mass squared of one final particles. As an application, by combining this formalism with Regge theory and SU(3) flavour symmetry we obtain constraints on the tree and the penguin amplitudes of the decay B0π+πB^0\to \pi^+\pi^-.Comment: 17 pages, Latex, 2 figure

    First experimental test of Bell inequalities performed using a non-maximally entangled state

    Get PDF
    We report on the realisation of a new test of Bell inequalities using the superposition of type I parametric down conversion produced in two different non-linear crystals pumped by the same laser, but with different polarisation. The produced state is non-maximally entangled. We discuss the advantages and the possible developments of this configuration

    POSIWID and determinism in design for behaviour change

    Get PDF
    Copyright @ 2012 Social Services Research GroupWhen designing to influence behaviour for social or environmental benefit, does designers' intent matter? Or are the effects on behaviour more important, regardless of the intent involved? This brief paper explores -- in the context of design for behaviour change -- some treatments of design, intentionality, purpose and responsibility from a variety of fields, including Stafford Beer's "The purpose of a system is what it does" and Maurice Broady's perspective on determinism. The paper attempts to extract useful implications for designers working on behaviour-related problems, in terms of analytical or reflective questions to ask during the design process

    Violation of Bell inequalities by photons more than 10 km apart

    Full text link
    A Franson-type test of Bell inequalities by photons 10.9 km apart is presented. Energy-time entangled photon-pairs are measured using two-channel analyzers, leading to a violation of the inequalities by 16 standard deviations without subtracting accidental coincidences. Subtracting them, a 2-photon interference visibility of 95.5% is observed, demonstrating that distances up to 10 km have no significant effect on entanglement. This sets quantum cryptography with photon pairs as a practical competitor to the schemes based on weak pulses.Comment: 4 pages, REVTeX, 2 postscript figures include

    Long-distance Bell-type tests using energy-time entangled photons

    Full text link
    Long-distance Bell-type experiments are presented. The different experimental challenges and their solutions in order to maintain the strong quantum correlations between energy-time entangled photons over more than 10 km are reported and the results analyzed from the point of view of tests of fundamental physics as well as from the more applied side of quantum communication, specially quantum key distribution. Tests using more than one analyzer on each side are also presented.Comment: 22 pages including 7 figures and 5 table

    What Does Free Space Lambda-Lambda Interaction Predict for Lambda-Lambda Hypernuclei?

    Full text link
    Data on Lambda-Lambda hypernuclei provide a unique method to learn details on the strangeness S =-2 sector of the baryon-baryon interaction. From the free space Bonn-Julich potentials, determined from data on baryon-baryon scattering in the S=0,-1 channels, we construct an interaction in the S =-2 sector to describe the experimentally known Lambda-Lambda hypernuclei. After including short--range (Jastrow) and RPA correlations, we find masses for these Lambda-Lambda hypernuclei in a reasonable agreement with data, taking into account theoretical and experimental uncertainties. Thus, we provide a natural extension, at low energies, of the Bonn-Julich OBE potentials to the S =-2 channel.Comment: 4 pages, 2 figures, revtex4 style. Minor changes in conclusions. References updated. Accepted in Phys. Rev. Let
    corecore