Theoretical studies on the possible origin of room temperature ferromagnetism
(ferromagnetic once crystallized) in the molecular transition metal complex,
V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no
definite understanding of crystal structure so far because of sample quality,
though the effective valence of V is known to be close to +2. Proposing a new
crystal structure for the stoichiometric case of x=2, where the valence of each
TCNE molecule is -1 and resistivity shows insulating behavior, exchange
interaction among d-electrons on adjacent V atoms has been estimated based on
the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that
Hund's coupling among d orbitals within the same V atoms and antiferromagnetic
coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to
hybridization result in overall ferromagnetism (to be precise, ferrimagnetism).
This view based on localized electrons is supplemented by the band picture,
which indicates the existence of a flat band expected to lead to ferromagnetism
as well consistent with the localized view. The off-stoichiometric cases (x<2),
which still show ferromagnetism but semiconducting transport properties, have
been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3
(March issue), in press; 6 pages, 8 figure