349 research outputs found

    A feasibility study of a hypersonic real-gas facility

    Get PDF
    A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch

    Silent speech: restoring the power of speech to people whose larynx has been removed

    Get PDF
    Every year, some 17,500 people in Europe and North America lose the power of speech after undergoing a laryngectomy, normally as a treatment for throat cancer. Several research groups have recently demonstrated that it is possible to restore speech to these people by using machine learning to learn the transformation from articulator movement to sound. In our project articulator movement is captured by a technique developed by our collaborators at Hull University called Permanent Magnet Articulography (PMA), which senses the changes of magnetic field caused by movements of small magnets attached to the lips and tongue. This solution, however, requires synchronous PMA-and-audio recordings for learning the transformation and, hence, it cannot be applied to people who have already lost their voice. Here we propose to investigate a variant of this technique in which the PMA data are used to drive an articulatory synthesiser, which generates speech acoustics by simulating the airflow through a computational model of the vocal tract. The project goals, participants, current status, and achievements of the project are discussed below.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Eclipsing binary and white dwarf features associated with K2 target EPIC251248385

    Full text link
    White dwarfs, remnants of Sun-like stars which have completed their evolution, are one of the most common types of stars in space. Despite this, very few white dwarfs have been observed in transiting or eclipsing systems, and only two planetary systems around white dwarfs are currently known, thus motivating a search for white dwarfs with transits or eclipses as seen by the Kepler telescope. A systematic search of K2 white dwarf targets revealed one candidate with regular eclipses, but additional research was necessary to confirm the transits and white dwarf signal were coming from the same astrophysical source. The software package PyKe was utilized to adjust the light curve aperture, and perform principal component analysis which revealed that the transits were originating from a single pixel. Generating a new lightcurve from this pixel revealed the absolute transit depth, which was unconstrained previously. Ten additional images taken with the 2m LCOGT telescope revealed that a potential target star in the single Kepler pixel was actually a cluster of three stars, but no clear transits were seen from any of the potential target stars in the followup images. Additionally, analysis of transit depths in the single pixel light curve and additional investigation of nearby bright sources supported the hypothesis that the transits were more likely to be coming from the white dwarf rather than the two other sources. However, the transit duration and shape appear atypical for white dwarf systems. Thus, despite determining the potential sources and relative sizes for the potential eclipsing white dwarf candidate, or whether the eclipses come from the white dwarf target cannot be confirmed without additional data.https://iopscience.iop.org/article/10.3847/2515-5172/ab5861Published versio

    Observation of anomalous spin-state segregation in a trapped ultra-cold vapor

    Get PDF
    We observe counter-intuitive spin segregation in an inhomogeneous sample of ultra-cold, non-condensed Rubidium atoms in a magnetic trap. We use spatially selective microwave spectroscopy to verify a model that accounts for the differential forces on two internal spin states. In any simple understanding of the cloud dynamics, the forces are far too small to account for the dramatic transient spin polarizations observed. The underlying mechanism remains to be elucidated.Comment: 5 pages, 3 figure

    Internal state conversion in ultracold gases

    Full text link
    We consider an ultracold gas of (non-condensed) bosons or fermions with two internal states, and study the effect of a gradient of the transition frequency between these states. When a π/2\pi/2 RF pulse is applied to the sample, exchange effects during collisions transfer the atoms into internal states which depend on the direction of their velocity. This results, after a short time, in a spatial separation between the two states. A kinetic equation is solved analytically and numerically; the results agree well with the recent observations of Lewandowski et al.Comment: Accepted version, to appear in PR

    Calculation of NMR Properties of Solitons in Superfluid 3He-A

    Full text link
    Superfluid 3He-A has domain-wall-like structures, which are called solitons. We calculate numerically the structure of a splay soliton. We study the effect of solitons on the nuclear-magnetic-resonance spectrum by calculating the frequency shifts and the amplitudes of the soliton peaks for both longitudinal and transverse oscillations of magnetization. The effect of dissipation caused by normal-superfluid conversion and spin diffusion is calculated. The calculations are in good agreement with experiments, except a problem in the transverse resonance frequency of the splay soliton or in magnetic-field dependence of reduced resonance frequencies.Comment: 15 pages, 10 figures, updated to the published versio

    Optical Confinement of a Bose-Einstein Condensate

    Full text link
    Bose-Einstein condensates of sodium atoms have been confined in an optical dipole trap using a single focused infrared laser beam. This eliminates the restrictions of magnetic traps for further studies of atom lasers and Bose-Einstein condensates. More than five million condensed atoms were transferred into the optical trap. Densities of up to 3×1015cm−33 \times 10^{15} cm^{-3} of Bose condensed atoms were obtained, allowing for a measurement of the three-body decay rate constant for sodium condensates as K3=(1.1±0.3)×10−30cm6s−1K_3 = (1.1 \pm 0.3) \times 10^{-30} cm^6 s^{-1}. At lower densities, the observed 1/e lifetime was more than 10 sec. Simultaneous confinement of Bose-Einstein condensates in several hyperfine states was demonstrated.Comment: 5 pages, 4 figure
    • …
    corecore