328 research outputs found
Analysis of selection pressure exerted on Plasmopara viticola by organically based fungicides
Downy mildew is one of the most important grape diseases world-wide. The pathogen is a genetically highly diversified organism with a high capacity of adaptation. A monitoring of changes in population structure of P. viticola subjected to new copper replacing products or strategies, studied and developed within REPCO (Replacement of Copper Fungicides in Organic Production of Grapevine and Apple in Europe) is important for assessing selection pressure which could lead to a reduction of efficacy of these new measures. Therefore P. viticola lesions collected on untreated and treated vines were analyzed by means of microsatellite markers. No significant differences in the populations structure were determined among untreated and treated populations, indicating that the applied products didn’t exerted any selection pressure on the P. viticola populations
Microturbulence studies in RFX-mod
Present-days Reversed Field Pinches (RFPs) are characterized by quasi-laminar
magnetic configurations in their core, whose boundaries feature sharp internal
transport barriers, in analogy with tokamaks and stellarators. The abatement of
magnetic chaos leads to the reduction of associated particle and heat transport
along wandering field lines. At the same time, the growth of steep temperature
gradients may trigger drift microinstabilities. In this work we summarize the
work recently done in the RFP RFX-mod in order to assess the existence and the
impact upon transport of such electrostatic and electromagnetic
microinstabilities as Ion Temperature Gradient (ITG), Trapped Electron Modes
(TEM) and microtearing modes.Comment: Work presented at the 2010 Varenna workshop "Theory of Fusion
Plasmas". To appear in Journal of Physics Conference Serie
Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome
A series of 21 multiplex (MP) polymerase chain reactions containing simple sequence repeat (SSR) markers spanning most of the apple genome has been developed. Eighty-eight SSR markers, well distributed over all 17 linkage groups (LGs), have been selected. Eighty-four of them were included in 21 different MPs while four could not be included in any MPs. The 21 MPs were then used to genotype approximately 2,000 DNA samples from the European High-quality Disease-Resistant Apples for a Sustainable agriculture project. Two SSRs (CH01d03 and NZAL08) were discarded at an early stage as they did not produce stable amplifications in the MPs, while the scoring of the multilocus (ML) SSR Hi07d11 and CN44794 was too complex for large-scale genotyping. The testing of the remaining 80 SSRs over a large number of different genotypes allowed: (1) a better estimation of their level of polymorphism; as well as of (2) the size range of the alleles amplified; (3) the identification of additional unmapped loci of some ML SSRs; (4) the development of methods to assign alleles to the different loci of ML SSRs and (5) conditions at which an SSR previously described as ML would amplify alleles of a single locus to be determined. These data resulted in the selection of 75 SSRs out of the 80 that are well suited and recommended for large genotyping project
New gas mixtures suitable for rare event detection using a Micromegas-TPC detector
The aim of the presented work was to develop further techniques based on a
Micromegas-TPC, in order to reach a high gas gain with good energy resolution,
and to search for gas mixtures suitable for rare event detection. This paper
focuses on xenon, which is convenient for the search of neutrinoless double
beta decay in 136 Xe. Conversely, a small admixture of xenon to CF 4 can reduce
attachment in the latter. This gas mixture would be suitable for dark matter
searches and the study of solar and reactor neutrinos. Various configurations
of the Micromegas plane were investigated and are described.Comment: 14 pages, 8 figures, article, revised version with improved figures,
text modifications, accepted for publication by JINS
MHD equilibrium and stability of tokamaks and RFP systems with 3D helical cores
Bifurcated magnetohydrodynamic (MHD) equilibrium states are computed for ITER hybrid scenario and RFX-mod SHAx configurations with very flat or reversed core magnetic shear conditions. In the ITER studies, the minimum inverse rotational transform qmin is near unity, while for RFX-mod it is 1/8. Two equilibrium states are obtained: one is axisymmetric, the other displays a 3D helical core. In tokamak devices, the structure resembles a saturated ideal MHD internal kink mode. In the reversed-field pinch, the structure is seven-fold toroidally periodic. The equilibrium magnetic field spectrum in the Boozer coordinate frame is calculated in both the ITER and RFX-mod configurations and the implications are discussed. The RFX-mod equilibria are strongly unstable to external ideal MHD kink modes, which become stabilized with a closely fitting conducting shell when the equilibrium state has a weak reversed core shear. It is marginally unstable with a monotonic q-profile. Unstable modes are driven by the Ohmic current, with pressure and Pfirsch–Schl¨uter currents having a very weak effect. The external kink mode spectrum is dominated by coupled , and , Fourier components, which revert to , and , terms with a conducting wall in proximity to the plasma–vacuum interface
Magentohydrodynamic Properties of Nominally Axisymmetric Systems with 3D Helical Core
Magnetohydrodynamic equilibrium states with a three-dimensional helical core are computed to model the MAST spherical tokamak and the RFX-mod reversed field pinch. The boundary is fixed as axisymmetric. The MAST equilibrium state has the appearance of an internal kink mode and is obtained under conditions of weak reversed central shear. The RFX-mod equilibrium state has seven-fold periodicity. An ideal magnetohydrodynamic stability analysis reveals that the reversal of the core magnetic shear can stabilize a periodicity-breaking mode that is dominantly m/n = 1/8 strongly coupled to a m/n = 2/15 component, as long as the central rotational transform does not exceed the value of 8
RFX-mod2 as a flexible device for reversed-field-pinch and low-field tokamak research
The RFX-mod2 installation is planned to be completed by 2024 and the start of operations is expected in 2025. The high flexibility of the machine (already tested in the previous RFX-mod experiment) allows operation in Reversed Field Pinch and tokamak configuration as well as ultra-low q pulses. In this work we present predictive analysis on transport, performances and plasma control in RFX-mod2 in view of the first experimental campaigns
High resolution gamma-ray spectrometer with MHz capabilities for runaway electron studies at ASDEX Upgrade
Physics basis for the divertor tokamak test facility
This paper is dealing with the physics basis used for the design of the Divertor Tokamak Test facility (DTT), under construction in Frascati (DTT 2019 DTT interim design report (2019)) Italy, and with the description of the main target plasma scenarios of the device. The main goal of the facility will be the study of the power exhaust, intended as a fully integrated core-edge problem, and eventually to propose an optimized divertor for the European DEMO plant. The approach used to design the facility is described and their main features are reported, by using simulations performed by state-of-the-art codes both for the bulk and edge studies. A detailed analysis of MHD, including also the possibility to study disruption events and Energetic Particles physics is also reported. Eventually, a description of the ongoing work to build-up a Research Plan written and shared by the full EUROfusion community is presente
- …
