308 research outputs found

    Acoustic Scene Classification

    Get PDF
    This work was supported by the Centre for Digital Music Platform (grant EP/K009559/1) and a Leadership Fellowship (EP/G007144/1) both from the United Kingdom Engineering and Physical Sciences Research Council

    Lagrangian and Hamiltonian two-scale reduction

    Get PDF
    Studying high-dimensional Hamiltonian systems with microstructure, it is an important and challenging problem to identify reduced macroscopic models that describe some effective dynamics on large spatial and temporal scales. This paper concerns the question how reasonable macroscopic Lagrangian and Hamiltonian structures can by derived from the microscopic system. In the first part we develop a general approach to this problem by considering non-canonical Hamiltonian structures on the tangent bundle. This approach can be applied to all Hamiltonian lattices (or Hamiltonian PDEs) and involves three building blocks: (i) the embedding of the microscopic system, (ii) an invertible two-scale transformation that encodes the underlying scaling of space and time, (iii) an elementary model reduction that is based on a Principle of Consistent Expansions. In the second part we exemplify the reduction approach and derive various reduced PDE models for the atomic chain. The reduced equations are either related to long wave-length motion or describe the macroscopic modulation of an oscillatory microstructure.Comment: 40 page

    Boundary effects on the dynamics of chains of coupled oscillators

    Full text link
    We study the dynamics of a chain of coupled particles subjected to a restoring force (Klein-Gordon lattice) in the cases of either periodic or Dirichlet boundary conditions. Precisely, we prove that, when the initial data are of small amplitude and have long wavelength, the main part of the solution is interpolated by a solution of the nonlinear Schr\"odinger equation, which in turn has the property that its Fourier coefficients decay exponentially. The first order correction to the solution has Fourier coefficients that decay exponentially in the periodic case, but only as a power in the Dirichlet case. In particular our result allows one to explain the numerical computations of the paper \cite{BMP07}
    corecore