89 research outputs found

    Mangosteen Extract Shows a Potent Insulin Sensitizing Effect in Obese Female Patients: A Prospective Randomized Controlled Pilot Study.

    Get PDF
    There is a widely acknowledged association between insulin resistance and obesity/type 2 diabetes (T2DM), and insulin sensitizing treatments have proved effective in preventing diabetes and inducing weight loss. Obesity and T2DM are also associated with increased inflammation. Mangosteen is a tropical tree, whose fruits—known for their antioxidant properties—have been recently suggested having a possible further role in the treatment of obesity and T2DM. The objective of this pilot study has been to evaluate safety and efficacy of treatment with mangosteen extract on insulin resistance, weight management, and inflammatory status in obese female patients with insulin resistance. Twenty-two patients were randomized 1:1 to behavioral therapy alone or behavioral therapy and mangosteen and 20 completed the 26-week study. The mangosteen group reported a significant improvement in insulin sensitivity (homeostatic model assessment-insulin resistance, HOMA-IR −53.22% vs. −15.23%, p = 0.004), and no side effect attributable to treatment was reported. Given the positive preliminary results we report and the excellent safety profile, we suggest a possible supplementary role of mangosteen extracts in the treatment of obesity, insulin resistance, and inflammation

    Overweight and obese patients with nickel allergy have a worse metabolic profile compared to weight matched non-allergic individuals

    Get PDF
    A lack of balance between energy intake and expenditure due to overeating or reduced physical activity does not seem to explain entirely the obesity epidemic we are facing, and further factors are therefore being evaluated. Nickel (Ni) is a ubiquitous heavy metal implied in several health conditions. Regarding this, the European Food Safety Authority has recently released an alert on the possible deleterious effects of dietary Ni on human health given the current levels of Ni dietary intake in some countries. Pre-clinical studies have also suggested its role as an endocrine disruptor and have linked its exposure to energy metabolism and glucose homeostasis dysregulation. Ni allergy is common in the general population, but preliminary data suggest it being even more widespread among overweight patients. OBJECTIVES: The aim of this study has been to evaluate the presence of Ni allergy and its association with the metabolic and endocrine profile in overweight and obese individuals. METHODS: We have evaluated 1128 consecutive overweight and obese outpatients. 784 were suspected of being allergic to Ni and 666 were assessed for it. Presence of Ni allergy and correlation with body mass index (BMI), body composition, metabolic parameters and hormonal levels were evaluated. RESULTS: We report that Ni allergy is more frequent in presence of weight excess and is associated with worse metabolic parameters and impaired Growth Hormone secretion. CONCLUSIONS: We confirm that Ni allergy is more common in obese patients, and we report for the first time its association with worse metabolic parameters and impaired function of the GH-IGF1 axis in human subjects

    Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain

    Get PDF
    Transcranial magnetic stimulation (TMS) is a non-invasive technique that uses the principle of electromagnetic induction to generate currents in the brain via pulsed magnetic fields. The magnitude of such induced currents is unknown. In this study we measured the TMS induced current densities in a patient with implanted depth electrodes for epilepsy monitoring. A maximum current density of 12 microA/cm2 was recorded at a depth of 1 cm from scalp surface with the optimum stimulation orientation used in the experiment and an intensity of 7% of the maximal stimulator output. During TMS we recorded relative current variations under different stimulating coil orientations and at different points in the subject's brain. The results were in accordance with current theoretical models. The induced currents decayed with distance form the coil and varied with alterations in coil orientations. These results provide novel insight into the physical and neurophysiological processes of TMS

    Autophagy is activated in vivo during trimethyltin-induced apoptotic neurodegeneration: A study in the rat hippocampus

    Get PDF
    Trimethyltin (TMT) is an organotin compound known to produce significant and selective neuronal degeneration and reactive astrogliosis in the rodent central nervous system. Autophagy is the main cellular mechanism for degrading and recycling protein aggregates and damaged organelles, which in different stress conditions, such as starvation, generally improves cell survival. Autophagy is documented in several pathologic conditions, including neurodegenerative diseases. This study aimed to investigate the autophagy and apoptosis signaling pathways in hippocampal neurons of TMT-treated (Wistar) rats to explore molecular mechanisms involved in toxicant-induced neuronal injury. The microtubule-associated protein light chain (LC3, autophagosome marker) and sequestosome1 (SQSTM1/p62) (substrate of autophagy-mediated degradation) expressions were examined by Western blotting at different time points after intoxication. The results demonstrate that the LC3 II/I ratio significantly increased at 3 and 5 days, and that p62 levels significantly decreased at 7 and 14 days. Immunofluorescence images of LC3/neuronal nuclear antigen (NeuN) showed numerous strongly positive LC3 neurons throughout the hippocampus at 3 and 5 days. The terminal deoxynucleotidyltransferase dUTP nick end labeling (TUNEL) assay indicated an increase in apoptotic cells starting from 5 days after treatment. In order to clarify apoptotic pathway, immunofluorescence images of apoptosis-inducing factor (AIF)/NeuN did not show nuclear translocation of AIF in neurons. Increased expression of cleaved Caspase-3 was revealed at 5–14 days in all hippocampal regions by Western blotting and immunohistochemistry analyses. These data clearly demonstrate that TMT intoxication induces a marked increase in both autophagy and caspase-dependent apoptosis, and that autophagy occurring just before apoptosis could have a potential role in neuronal loss in this experimental model of neurodegeneration

    Distinct Olfactory Cross-Modal Effects on the Human Motor System

    Get PDF
    BACKGROUND: Converging evidence indicates that action observation and action-related sounds activate cross-modally the human motor system. Since olfaction, the most ancestral sense, may have behavioural consequences on human activities, we causally investigated by transcranial magnetic stimulation (TMS) whether food odour could additionally facilitate the human motor system during the observation of grasping objects with alimentary valence, and the degree of specificity of these effects. METHODOLOGY/PRINCIPAL FINDINGS: In a repeated-measure block design, carried out on 24 healthy individuals participating to three different experiments, we show that sniffing alimentary odorants immediately increases the motor potentials evoked in hand muscles by TMS of the motor cortex. This effect was odorant-specific and was absent when subjects were presented with odorants including a potentially noxious trigeminal component. The smell-induced corticospinal facilitation of hand muscles during observation of grasping was an additive effect which superimposed to that induced by the mere observation of grasping actions for food or non-food objects. The odour-induced motor facilitation took place only in case of congruence between the sniffed odour and the observed grasped food, and specifically involved the muscle acting as prime mover for hand/fingers shaping in the observed action. CONCLUSIONS/SIGNIFICANCE: Complex olfactory cross-modal effects on the human corticospinal system are physiologically demonstrable. They are odorant-specific and, depending on the experimental context, muscle- and action-specific as well. This finding implies potential new diagnostic and rehabilitative applications

    Avoiding moving obstacles

    Get PDF
    To successfully move our hand to a target, we must consider how to get there without hitting surrounding objects. In a dynamic environment this involves being able to respond quickly when our relationship with surrounding objects changes. People adjust their hand movements with a latency of about 120 ms when the visually perceived position of their hand or of the target suddenly changes. It is not known whether people can react as quickly when the position of an obstacle changes. Here we show that quick responses of the hand to changes in obstacle position are possible, but that these responses are direct reactions to the motion in the surrounding. True adjustments to the changed position of the obstacle appeared at much longer latencies (about 200 ms). This is even so when the possible change is predictable. Apparently, our brain uses certain information exceptionally quickly for guiding our movements, at the expense of not always responding adequately. For reaching a target that changes position, one must at some time move in the same direction as the target did. For avoiding obstacles that change position, moving in the same direction as the obstacle is not always an adequate response, not only because it may be easier to avoid the obstacle by moving the other way, but also because one wants to hit the target after passing the obstacle. Perhaps subjects nevertheless quickly respond in the direction of motion because this helps avoid collisions when pressed for time. © 2008 Springer-Verlag

    Reflecting on mirror mechanisms:motor resonance effects during action observation only present with low-intensity transcranial magnetic stimulation

    Get PDF
    Transcranial magnetic stimulation (TMS) studies indicate that the observation of other people's actions influences the excitability of the observer's motor system. Motor evoked potential (MEP) amplitudes typically increase in muscles which would be active during the execution of the observed action. This 'motor resonance' effect is thought to result from activity in mirror neuron regions, which enhance the excitability of the primary motor cortex (M1) via cortico-cortical pathways. The importance of TMS intensity has not yet been recognised in this area of research. Low-intensity TMS predominately activates corticospinal neurons indirectly, whereas high-intensity TMS can directly activate corticospinal axons. This indicates that motor resonance effects should be more prominent when using low-intensity TMS. A related issue is that TMS is typically applied over a single optimal scalp position (OSP) to simultaneously elicit MEPs from several muscles. Whether this confounds results, due to differences in the manner that TMS activates spatially separate cortical representations, has not yet been explored. In the current study, MEP amplitudes, resulting from single-pulse TMS applied over M1, were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles during the observation of simple finger abductions. We tested if the TMS intensity (110% vs. 130% resting motor threshold) or stimulating position (FDI-OSP vs. ADM-OSP) influenced the magnitude of the motor resonance effects. Results showed that the MEP facilitation recorded in the FDI muscle during the observation of index-finger abductions was only detected using low-intensity TMS. In contrast, changes in the OSP had a negligible effect on the presence of motor resonance effects in either the FDI or ADM muscles. These findings support the hypothesis that MN activity enhances M1 excitability via cortico-cortical pathways and highlight a methodological framework by which the neural underpinnings of action observation can be further explored. © 2013 Loporto et al

    Low Fidelity Imitation of Atypical Biological Kinematics in Autism Spectrum Disorders Is Modulated by Self-Generated Selective Attention.

    Get PDF
    We examined whether adults with autism had difficulty imitating atypical biological kinematics. To reduce the impact that higher-order processes have on imitation we used a non-human agent model to control social attention, and removed end-state target goals in half of the trials to minimise goal-directed attention. Findings showed that only neurotypical adults imitated atypical biological kinematics. Adults with autism did, however, become significantly more accurate at imitating movement time. This confirmed they engaged in the task, and that sensorimotor adaptation was self-regulated. The attentional bias to movement time suggests the attenuation in imitating kinematics might be a compensatory strategy due to deficits in lower-level visuomotor processes associated with self-other mapping, or selective attention modulated the processes that represent biological kinematics

    Altered Perceptual Sensitivity to Kinematic Invariants in Parkinson's Disease

    Get PDF
    Ample evidence exists for coupling between action and perception in neurologically healthy individuals, yet the precise nature of the internal representations shared between these domains remains unclear. One experimentally derived view is that the invariant properties and constraints characterizing movement generation are also manifested during motion perception. One prominent motor invariant is the “two-third power law,” describing the strong relation between the kinematics of motion and the geometrical features of the path followed by the hand during planar drawing movements. The two-thirds power law not only characterizes various movement generation tasks but also seems to constrain visual perception of motion. The present study aimed to assess whether motor invariants, such as the two thirds power law also constrain motion perception in patients with Parkinson's disease (PD). Patients with PD and age-matched controls were asked to observe the movement of a light spot rotating on an elliptical path and to modify its velocity until it appeared to move most uniformly. As in previous reports controls tended to choose those movements close to obeying the two-thirds power law as most uniform. Patients with PD displayed a more variable behavior, choosing on average, movements closer but not equal to a constant velocity. Our results thus demonstrate impairments in how the two-thirds power law constrains motion perception in patients with PD, where this relationship between velocity and curvature appears to be preserved but scaled down. Recent hypotheses on the role of the basal ganglia in motor timing may explain these irregularities. Alternatively, these impairments in perception of movement may reflect similar deficits in motor production

    The Dynamics of Sensorimotor Cortical Oscillations during the Observation of Hand Movements: An EEG Study

    Get PDF
    Background The observation of action done by others determines a desynchronization of the rhythms recorded from cortical central regions. Here, we examined whether the observation of different types of hand movements (target directed, non-target directed, cyclic and non-cyclic) elicits different EEG cortical temporal patterns. Methodology Video-clips of four types of hand movements were shown to right-handed healthy participants. Two were target directed (grasping and pointing) motor acts; two were non-target directed (supinating and clenching) movements. Grasping and supinating were performed once, while pointing and clenching twice (cyclic movements). High-density EEG was recorded and analyzed by means of wavelet transform, subdividing the time course in time bins of 200 ms. The observation of all presented movements produced a desynchronization of alpha and beta rhythms in central and parietal regions. The rhythms desynchronized as soon as the hand movement started, the nadir being reached around 700 ms after movement onset. At the end of the movement, a large power rebound occurred for all bands. Target and non-target directed movements produced an alpha band desynchronization in the central electrodes at the same time, but with a stronger desynchronization and a prolonged rebound for target directed motor acts. Most interestingly, there was a clear correlation between the velocity profile of the observed movements and beta band modulation. Significance Our data show that the observation of motor acts determines a modulation of cortical rhythm analogous to that occurring during motor act execution. In particular, the cortical motor system closely follows the velocity of the observed movements. This finding provides strong evidence for the presence in humans of a mechanism (mirror mechanism) mapping action observation on action execution motor programs
    corecore